
Noname manuscript No.
(will be inserted by the editor)

The Secret Life of Test Smells - An Empirical Study
on Test Smell Evolution and Maintenance

Dong Jae Kim · Tse-Hsun (Peter)
Chen · Jinqiu Yang

Received: —/ Accepted: —

Abstract In recent years, researchers and practitioners have been studying
the impact of test smells in test maintenance. However, there is still limited
empirical evidence on why developers remove test smells in software mainte-
nance and the mechanism employed for addressing test smells. In this paper,
we conduct an empirical study on 12 real-world open-source systems to study
the evolution and maintenance of test smells and how test smells are related
to software quality. Results show that: 1) Although the number of test smell
instances increases, test smell density decreases as systems evolve. 2) How-
ever, our qualitative analysis on those removed test smells reveals that most
test smell removal (83%) is a by-product of feature maintenance activities.
45% of the removed test smells relocate to other test cases due to refactoring,
while developers deliberately address the only 17% of test smells, consisting
of largely Exception Catch/Throw and Sleepy Test. 3) Our statistical model
shows that test smell metrics can provide additional explanatory power on
post-release defects over traditional baseline metrics (an average of 8.25% in-
crease in AUC). However, most types of test smells have a minimal effect on
post-release defects. Our study provides insight into developers’ perception of
test smells and current practices. Future studies on test smells may consider
focusing on the specific types of test smells that may have a higher correlation
with defect-proneness when helping developers with test code maintenance.

Keywords Test Smell · Empirical Study · Software Quality

1 Introduction

In modern software development, developers need to continuously implement
changes to the software system to keep up with the consumers’ ever-growing

Dong Jae Kim · Tse-Hsun (Peter) Chen · Jinqiu Yang
Department of Computer Science and Engineering, Concordia University, Montreal, Canada
E-mail: {k dongja, peterc, jinqiuy}@encs.concordia.ca

2 Dong Jae Kim et al.

demands. As a software system evolves, tremendous collaborative effort takes
place to deliver features and perform maintenance activities. Due to the im-
portance of software quality, automated regression testing has played a pivotal
role in software development. New test code is developed to test the newly-
added SUT code and is executed after code changes to ensure that the new
changes do not introduce defects (Ali et al., 2019).

To ensure the effectiveness of regression testing, developers need to main-
tain a set of high-quality test cases to validate software quality continuously.
Unfortunately, similar to source code, test code may also contain defects and
design issues that hinder the quality of the test code. For example, prior stud-
ies (Lam et al., 2019; Luo et al., 2014) have found that the results of some
test cases may be unreliable (e.g., flaky tests) due to defects in test code. Thus
far, researchers and practitioners have started to notice recurring design prob-
lems in the test code (Spadini et al., 2018; Van Deursen et al., 2001) and have
coined the term test smell. Like code smells in source code, test smells indicate
potential design problems in test code. Bavota et al. (2015) found that test
smells are prevalent in software systems and may hinder test comprehension
and maintenance.

Despite the findings achieved so far, there is limited empirical evidence on
the awareness of test smells. One research found that developers are aware of
test smells and their potential consequences (Peruma et al., 2019), while others
found that developers do not believe the benefit of removing test smells (Ju-
nior et al., 2020a,b; Tufano et al., 2016). Therefore, by studying why devel-
opers remove test smells from how test smells are addressed during software
maintenance, we can improve test code quality and develop an effective test
code refactoring recommendation tool. Studying the maintenance will help
(1) expand future research on understanding what may prompt developers to
maintain test code, and (2) provide evidence on the most paid attention test
smells.

In this paper, we conduct an empirical study on the maintenance of test
smell in 12 large-scale open-source systems. We study a total of 18 different
types of test smells that were defined and studied in prior research (Garousi
and Küçük, 2018; Junior et al., 2020a,b; Peruma et al., 2019; Qusef et al.,
2019; Spadini et al., 2018). In particular, we seek to answer the three following
research questions:
RQ1: How do test smells evolve overtime? We conduct a quantitative
analysis to study how tests smell evolve over three years (from 2016 to the
beginning of 2019) in the studied systems. Although we find that the total
number of test smell instances increases over time, the test smell density re-
mains relatively stable in the 12 studied systems after normalizing by the total
number of test code lines.
RQ2: What is the motivation behind removing test smells? We con-
duct a qualitative analysis of a statistically significant sample of the commits
that removed test smells. We find that in only 17% of the sampled commits,
developers directly address the test smells. In particular, developers are more
likely to address two test smells: Exception Catch/Throw and Sleepy Test.

Title Suppressed Due to Excessive Length 3

However, in 83% of the studied commits, the test smells are removed due to
the deletion of test code or are relocated to other test cases due to feature
refactoring activities. In short, we find that developers often do not directly
address the test smells when maintaining test code.

RQ3: What is the relationship between test smells and software
quality? Similar to prior work (Chen et al., 2017; de Pádua and Shang, 2018;
Moser et al., 2008; Munson and Khoshgoftaar, 1992), we build a logistic re-
gression model to study the relationship between test smell and software qual-
ity. Some test smells (e.g., Conditional Test Logic, Exception Catch/Throw,
and Mystery Guest) have an increasing relationship with a source code file’s
defect-proneness when controlling for confounding factors like the traditional
product, process and coupling metrics. However, most types of test smells have
minimal effect on the defect-proneness.

In summary, our findings show that, as a system evolves, developers may
allocate resources on maintaining test code, but they may not be aware of
the test smells. Moreover, some test smells have a minimal effect on defect-
proneness, while only a few test smells have a positive impact on defect-
proneness. Future studies on test smells may consider focusing on the types
of test smells that may have a higher correlation with defect-proneness when
helping developers with test code maintenance.

Paper Organization. The rest of the paper is organized as follows. Section 2
describes an overview of test smells. Section 3 presents our research questions
and results. Section 4 discusses the implications of our findings. Section 5 dis-
cusses the threats to validity. Section 6 surveys related work. Finally, Section 7
summarizes the paper.

2 Background

2.1 A Brief Overview of Test Smells

Software testing is a vital component of modern software development. Test-
ing identifies defects in source code early on before the defects could incur
substantial impact (Sṕınola et al., 2019). It is widely adopted to utilize unit
testing frameworks such as JUnit or TestNG to enable test automation, i.e.,
test cases are written in test code, which can be executed. Like source code,
test code may also have design problems or even defects that hinder test-
ing effectiveness. Therefore, there has been an increasing interest to properly
maintain and improve the design of test code (Levin and Yehudai, 2017; Pinto
et al., 2012; Shamshiri et al., 2018). Therefore, researchers and practitioners
have started to study the quality of test cases and identify various problems
in test code (Bavota et al., 2015; Spadini et al., 2018; Van Deursen et al.,
2001). In particular, researchers have coined the term test smell to charac-
terize the recurring test design problems that may impair test comprehension
and maintainability.

4 Dong Jae Kim et al.

Table 1: An overview of the studied test smells. The first set of test smells
was first proposed by Deursen et al. (2001), and investigated further by other
studies on its diffusion [DF] in software systems (Bleser et al., 2019; Palomba
et al., 2016), impact on software test code comprehension [CO] (Bavota et al.,
2012; Tufano et al., 2016), developers’ awareness of test smells [AW] (Peruma
et al., 2019; Spadini et al., 2020; Tufano et al., 2016) and relation with software
quality [QT] (Athanasiou et al., 2014). The remaining test smells are recently
studied test smells by Peruma et al. (2019) and investigated on their diffusions
and developers’ perceptions.

Test smell Abbrev. Description

Literature Test Smells (Deursen et al., 2001)

Assertion Roulette AR One test case may contain several assertions with no
explanation. AR increases difficulties in comprehen-
sion [DF/AW/QT].

Eager Test EGT A test case may exercise several methods of the object
under test, which may increase the difficulty in test
maintenance [DF/AW/QT/CO].

General Fixture GF A test case’s fixture is too general, and the test code
only accesses a part of it. The test case may exe-
cute unnecessary code and increase runtime overhead
[DF/AW/CO].

Lazy Test LT Occurs when multiple test cases invoke the same
method of the source code object, which may increase
the difficulty in test maintenance [DF/AW].

Mystery Guest MG Test code that uses external resources. Tests contain-
ing such a smell are dicult to comprehend and main-
tain, due to the lack of information to understand
them [DF/AW/QT/CO].

Resource Optimism RO A test case that makes optimistic assumptions about
the state/existence of external resources, which may
cause flaky test results. [DF/AW/QT].

Sensitive Equality SE A test using the toString method for equality check
in assert statements. The test case is sensitive to the
implementation of toString [DF/AW/QT/CO].

Recently Proposed Test Smells (Peruma et al., 2019)

Conditional Test Logic CTL There exist conditions in a test case that may alter the
behavior of the test and its expected output.

Constructor Initializa-
tion

CI A test class may use a constructor instead of JUnit’s
setUp(). This may introduce side effects when the test
class inherits another class, i.e., the parent class’s con-
structor will still be invoked.

Empty Test ET Occurs when test code has no executable statements.
Exception
Catch/Throw

ECT Passing or failing a test case depends on custom excep-
tion handling code or exception throwing (instead of
using Junit expected attribute), which may hide real
problems and hamper debug.

Print Statement PS Print statements in unit tests are redundant as unit
tests are executed as part of an automated script and
do not affect the failing or passing of test cases. Fur-
thermore, they can increase execution time if the de-
veloper calls a long-running method from within the
print method (i.e., as a parameter).

Redundant Assertion RA A test case may contain assertion statements that are
either always true or always false.

Sleepy Test ST Occurs when explicitly making a thread to sleep in
test cases can cause flaky test results.

Duplicate Assert DA Occurs when a test case tests the same condition mul-
tiple times, which may increase test overhead.

Unknown Test UT A test method is written without an assertion state-
ment.

IgnoredTest IT A test case that is disabled using JUnit’s @Ignore.
Magic Number Test MNT A test method contains unexplained and undocu-

mented numeric literals as parameters or identifiers,
which increases maintenance difficulty.

Title Suppressed Due to Excessive Length 5

Table 1 shows the 18 different types of test smells that we include in our
study. These test smells are studied in prior work (Bavota et al., 2012; Bavota
et al., 2015; Garousi and Küçük, 2018; Junior et al., 2020a; Knuth, 1981; Pe-
ruma et al., 2019). In particular, the current knowledge of test smells that
we know from the literature was first proposed by Deursen et al. (2001), and
these were expanded as a basis for further investigation in recent studies. For
instance, some studies (Bavota et al., 2015; Bleser et al., 2019; Tufano et al.,
2016) found a high diffusion of test smells in software systems, and such test
smells may not be removed as systems evolve. Other studies investigated the
impact of test smell on code comprehension by measuring the time taken for
understanding the test code in the presence/absence of test smells (Bavota
et al., 2012). Moreover, Athanasiou et al. (2014) studied the impact of test
smell on software quality (correlation with post-release defect) to fill the miss-
ing gap from numerous prior studies that only underlines its effects on software
maintainability.

Numerous researchers also surveyed software engineers to understand their
awareness, perception, or identification. For instance, a recent study by Pe-
ruma et al. (2019) proposed a new set of test smells and investigated their
diffusion and awareness. Their result suggests that developers are aware of test
smells and their potential consequences. On the contrary, others give evidence
that developers do not believe software systems could genuinely benefit from
addressing test smells (Junior et al., 2020a; Tufano et al., 2016). Nevertheless,
there is a lack of empirical evidence on what types of test smell developers pay
attention to the most and thereby maintain software evolution. Similarly, there
is also missing evidence on the common reasons and mechanisms in which test
smells are addressed. Hence, in this paper, we study how test smells evolve
and how developers manage test smells during software maintenance. More-
over, we also explore whether the existence and maintenance of test smells
correlate with software quality. Therefore, our work uses the detection tool
implemented by Peruma et al. (2019) which include the most comprehensive
type of test smells up to date, encompassing both the test smells from the
literature and their newly proposed test smells.

2.2 Identifying Test Smells

In this paper, we focus on studying the evolution and maintenance of test
smells. To identify test smells, we adopt a test smell detection tool called ts-
Detector implemented by Peruma et al. (2019) to analyze the studied systems.
We choose tsDetector because it can detect a comprehensive list of test smells
(i.e., 18 test smells in total, as described in Table 1) and has an average F-
score of 96.5% (Peruma et al., 2019). We focus on these 18 test smells because
they are related to unit testing practices in Java (Peruma et al., 2020), advo-
cated in xUnit guidelines (Meszaros, 2007), and extensively studied in prior
researches in test code maintainability and developers’ perception (Bavota
et al., 2012; Junior et al., 2020a). Although Garousi and Küçük (2018) sum-

6 Dong Jae Kim et al.

marized a catalog of 198 test smells, many are general code smells specific to
TCN language, come from grey literature (i.e., blog posts), and difficult to
generalize (e.g., complicated setup, long-running test, long test file). tsDetec-
tor uses JavaParser to detect test smell given the lists of the test files and the
corresponding source code under test (i.e., CUT). The CUT files are required
to detect specific types of test smells, such as Eager Test and Lazy Test, whose
primary concerns are about testing multiple CUT files in one test case, which
may negatively impact code comprehension.

To identify each test file’s corresponding CUT files, we follow prior studies
and utilize the naming convention (Chen et al., 2017; Peruma et al., 2019;
Spadini et al., 2018; Tufano et al., 2016; Zaidman et al., 2008). In particular, for
each test file, we identify the corresponding CUT files by removing the prefix
or the suffix of ”[Tt]est(s*)” from the names of the test files. We manually
verify the build configuration files (e.g., Maven or Gradle build file) of the
studied systems to use the default heuristic specified by Maven/Gradle plugin
to identify test files. The default heuristic matches with the prefix that we use
to determine the test files. The test smell detector tsDetector takes the lists
of test files, and their associated CUT files and reports any occurrences of the
18 types of test smells.

Although tsDetector outputs test smells at a file-level, most reported test
smells are a line-level and method-level, which are aggregated per file. In the
rest of our analysis, we study each test smell individually, therefore, at their
respective line and method-level. Furthermore, we modify the tsDetector to
output the raw count of test smells instead of the default boolean value. To
encourage the replication of our results, we have made the dataset publicly
available.1

3 Case Study Results

We first introduce our studied systems. We then discuss the results of our
research questions. For each research question, we discuss its motivation, the
approach we use to address the question, and the results.

3.1 Case Study Systems

Table 2 shows an overview of the studied systems. We conduct our study on
several versions of the 12 open-source Java systems. In particular, we conduct
our research in all official releases from the beginning of 2016 to the beginning
of 2019. We chose the studied systems based on the following selection criteria.
First, we selected the top 1,000 Java projects on GitHub ordered by popularity
(i.e., stargazer count). We also made sure that the repositories are not forks.
Second, we discarded projects that are below the 90th percentile in terms of
size (i.e., lines of code), repository popularity (i.e., stars), and the number of

1 https://github.com/SPEAR-SE/TestSmellEmpirical Data

Title Suppressed Due to Excessive Length 7

Table 2: An overview of the studied systems.

Systems #Releases LOC in Source Code
(2016 - 2019)

LOC in Test Code
(2016 - 2019)

Kafka 9 95K - 265K 18K - 101K
Groovy 9 338K - 393K 8K - 9K
Camel 8 586K - 1.0M 379K - 484K
Zookeeper 4 128K - 119K 25K - 36K
Cxf 9 696K - 753K 195K - 218K
Karaf 11 132K - 168K 14K - 17K
Flink 8 388K - 731K 100K - 234K
Accumulo 7 420K - 577K 49K - 47K
Hive 11 3.5M - 4.4M 162K - 221K
Bookkeeper 9 102K - 200K 32K - 85K
Wicket 8 264K - 257K 54K - 57K
Cassandra 6 315K - 184K 43K - 112K
Hadoop 3 637K - 1M 418K - 658K

Total 102 6.9M - 9.1M 1.1M - 1.6M

commits. We also remove systems that do not use issue report systems. In the
end, we are left with these 12 systems. As shown in Table 3, there are 998
active contributors in total (ranges from 15 to over 200 contributors) in the
studied systems with a wide range of experiences (i.e., in terms of number of
commits). In some systems, such as Kafka and Flink, the contributors’ median
number of commits is relatively high (i.e., 306 and 278 commits, respectively),
which shows that many contributors are actively contributing to the systems.
In Karaf, on the other hand, the median number of commits is only two. The
studied systems are widely used by practitioners, used in many commercial
settings, and are large in scale, with the number of lines of code (LOC) in
source code ranges from 6.9M to 9.1M, and the LOC in test code ranges from
1.1M to 1.6M. Moreover, the studied systems maintain a set of comprehensive
test cases and adopt the continuous integration practice by running the test
cases daily basis (Apache, 2020). The studied systems also cover different do-
mains, from big data processing and data warehousing solutions to distributed
databases and programming languages.

3.2 RQ1: How do test smells evolve overtime?

Motivation: Prior studies (Bavota et al., 2015; Tufano et al., 2016) reveal that
test smells are prevalent in software systems, and their presence hinders the
comprehension and maintenance of test code. In light of these findings, there
is limited empirical evidence of how the pervasiveness of test smell changes
over time and its relation to software maintenance. Namely, while many other
software artifacts should inevitably grow as the system evolves, we believe that
an interesting implication can be investigated by studying the pervasiveness
of test smells from the aspect of whether developers resolve test smells dur-

8 Dong Jae Kim et al.

Table 3: An overview of the developer experience and the number of contrib-
utors in the studied systems.

Contributed Commits
Systems Min Q1 Median Q3 Max Mean #Commits Contributor
Accumulo 1 5.75 27.00 486.25 2528 7.16 26
Bookkeeper 18 40.75 87.00 217.25 2545 4.37 35
camel 1 6.00 31.00 217.25 24339 6.61 204
Cassandra 2 23.50 101.50 189.50 1320 3.20 102
Cxf 1 3.00 10.00 82.75 8767 4.88 47
Flink 1 98.50 278.00 791.50 3456 3.25 175
Groovy 2 24.00 68.00 530.25 909 1.34 15
Hive 5 28.50 122.50 325.00 3041 2.80 112
Kafka 20 53.00 306.00 607.00 918 3.24 188
Karaf 1 1.00 2.00 61.00 949 1.91 38
Wicket 1 7.00 34.00 320.00 4219 1.39 20
Zookeeper 3 12.50 47.50 92.75 671 2.03 36
Hadoop 1 54.74 225.50 591 2368 2.47 373

ing software evolution. Hence, in this RQ, we quantitatively investigate the
evolution of test smells.

Approach: To study the evolution of test smells, we follow the approach
described in Section 2.2 to detect test smells in each studied software version.
In particular, we apply a test smell detection tool called tsDetector (Peruma
et al., 2019) to analyze the studied systems based on six-month windows from
2016 to 2019. In total, we obtain seven snapshots per studied system. We
consider a six-month window because studying the evolution of test code on
a commit by commit basis is expensive and dilute the modifications of test
smells. Moreover, since the studied systems have different sizes and test smells
may co-evolve with the amount of added test code and the raw number of the
test smell instances, we also report test smell density. We calculate test smell
density by dividing the number of test smell instances by the total number of
code lines. We use code lines as our normalization metrics because many test
smells are detected at the line level. We also normalized using other metrics
such as the number of methods in a file, and we found a similar trend in the
result.

Results: Figure 1 shows the time series plots of the averaged test smell density
in the studied systems from 2016 to 2019. We present the studied systems with
a similar scale of test smell densities in one plot for visualization ease. Averaged
test smell density is the normalized test smell metrics that is averaged over all
studied systems. We averaged the test smell densities to show a generalized
trend amongst the studied systems. Although not shown, we observe that test
smell density either remains stable (i.e., Bookeeper and Groovy) or decreases
(i.e., Kafka, Camel, Accumulo, Wicket, Hive, Cassandra, and CXF) in most
of the studied systems. When observing individual metrics as in Figure 1,
we find that most test smell densities also stay relatively stable. However,
ignored test smells increased far greater over-time compared to other test

Title Suppressed Due to Excessive Length 9

●

●
●

● ●

● ●

●

●

●

●

●

●
●

●
●

● ● ●
●

●

0.0005

0.0007

0.0009

0.0011

0.0013

1/1/2016

7/1/2016

1/1/2017

7/1/2017

1/1/2018

7/1/2018

1/1/2019

Time

D
en

si
ty

CI MG PS

● ●

● ● ●

●

●

●
● ●

● ●
●

●

●

●
●

●
●

●
●

●
●

●

● ●
●

●

0.0003

0.0006

0.0009

0.0012

0.0015

1/1/2016

7/1/2016

1/1/2017

7/1/2017

1/1/2018

7/1/2018

1/1/2019

Time

D
en

si
ty

RA SE ST IT

●
● ● ● ● ●

●

●
● ● ●

● ●
●

● ● ● ● ● ●
●

●

●

●
●

● ●

●

0.01

0.02

0.03

0.04

1/1/2016

7/1/2016

1/1/2017

7/1/2017

1/1/2018

7/1/2018

1/1/2019

Time

D
en

si
ty

EG ECT AR LT

●

●

●
●

●

●

●

● ● ●
●

●

●

●●

●
●

●
●

●

●

● ●
● ● ● ●

●

●

● ●
● ● ● ●

0.002

0.004

0.006

1/1/2016

7/1/2016

1/1/2017

7/1/2017

1/1/2018

7/1/2018

1/1/2019

Time

D
en

si
ty

GF UT MNT DA RO

Fig. 1: Time series plots that show the evolution of the test smell density (nor-
malized average) of the studied systems. The test smell densities are calculated
based on seven snapshots that are taken every six months between 2016 and
2019.

smells. Figure 2 shows the evolution of the raw test smell metrics averaged
over all of the studied systems. In general, we observe that all of the averaged
raw test smell metrics increase over-time, but normalized test smell densities
remain relatively stable.

We further investigate the change in the magnitude of test smell instances
(i.e., raw counts) and test smell density between the two snapshots taken in
2016 and 2019. Table 4 shows the change in the magnitude of the test smell
density, and similarly, Table 5 shows the change in the number of test smell
instances (raw counts). As shown in Table 4, the test smell density decreases
for most types of test smells. On the contrary, we find that the test smell
instances’ raw counts increase for most types of test smells (Table 5). Namely,

10 Dong Jae Kim et al.

● ●

●

●

●

●
●

●
●

●

●

●

●

●

● ● ● ●
● ● ●

50

100

150

1/1/2016

7/1/2016

1/1/2017

7/1/2017

1/1/2018

7/1/2018

1/1/2019

Time

D
en

si
ty

CI MG PS

● ● ● ● ● ● ●

●

●

●
●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

50

100

150

200

1/1/2016

7/1/2016

1/1/2017

7/1/2017

1/1/2018

7/1/2018

1/1/2019

Time

D
en

si
ty

RA SE ST IT

●
●

●
●

●
● ●

●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●
●

1000

2000

3000

4000

5000

1/1/2016

7/1/2016

1/1/2017

7/1/2017

1/1/2018

7/1/2018

1/1/2019

Time

D
en

si
ty

EG ECT AR LT

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ● ● ● ●
● ●

300

600

900

1/1/2016

7/1/2016

1/1/2017

7/1/2017

1/1/2018

7/1/2018

1/1/2019

Time

D
en

si
ty

GF UT MNT DA RO

Fig. 2: Time series plots that show the evolution of the averaged raw test smell
of the studied systems. The test smells are aggregated from on seven snapshots
taken every six months between 2016 and 2019.

190 (81%) out of 234 (i.e., 18 test smell types times 12 studied systems) of the
test smell types (across all studied systems) have an increase in the number
detected test smell instances, which indicates that test smells are prevalent in
the software and gradually grow over time. However, after normalized by the
LOC of the test code, 121 out of 234 (51%) of the test smell types (across all
studied systems) have a decreased test smell density. The findings may indicate
that while the number of added test smell instances are higher as the systems
evolve, test smell addition may be slower than that of test code addition. In
other words, either developer may introduce fewer test smell instances when
adding new test code or actively maintain test code, which results in the
removal of test smell instances. We further study the reason for test smell
removal in RQ2.

Title Suppressed Due to Excessive Length 11

Table 4: The comparison of the test smell density (number of test smell in-
stances per 1000 lines of test code) for each type of test smell in the studied
systems from 2016 and 2019.

Test
Smell

Accumulo Bookkeeper Camel Cassandra Cxf

2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 %

AR 15.63 14.87 -5 % ↗ 6.17 11.53 61 % ↘ 12.58 13.61 8 % ↘ 8.18 9.78 18 % ↘ 14.67 14.69 -
CTL 5.39 5.45 1 % ↘ 7.97 8.07 1 % ↘ 3.47 3.78 9 % ↘ 7.96 7.09 -12 % ↗ 4.16 4.20 1 % ↘

CI 0.41 0.27 -40 % ↗ 2.34 1.53 -42 % ↗ 0.21 0.32 38 % ↘ 0.06 0.17 101 % ↘ 0.79 0.74 -6 % ↗
ET 0.05 0.02 -79 % ↗ 0.00 0.00 - 0.19 0.14 -28 % ↗ 0.00 0.00 - % ↘ 0.06 0.05 -12 % ↗

ECT 19.67 15.88 -21 % ↗ 19.46 24.50 23 % ↘ 33.55 34.63 3 % ↘ 21.85 20.75 -5 % ↗ 29.11 28.33 -3 % ↗
GF 6.35 5.57 -13 % ↗ 5.79 6.54 12 % ↘ 2.05 2.37 14 % ↘ 1.37 2.41 55 % ↘ 4.26 3.93 -8 % ↗
MG 0.82 0.55 -40 % ↗ 1.87 1.54 -19 % ↗ 1.09 0.91 -17 % ↗ 1.17 1.19 1 % ↘ 1.40 1.27 -10 % ↗
PS 0.12 0.06 -63 % ↗ 0.06 0.12 60 % ↘ 0.08 0.06 -18 % ↗ 0.35 0.27 -27 % ↗ 0.08 0.10 24 % ↘
RA 0.92 0.34 -93 % ↗ 0.06 0.32 134 % ↘ 0.10 0.06 -52 % ↗ 0.25 0.30 16 % ↘ 0.12 0.12 -
SE 2.15 1.56 -32 % ↗ 0.03 0.22 150 % ↘ 0.85 0.77 -10 % ↗ 0.28 0.51 59 % ↘ 2.16 2.00 -7 % ↗
ST 0.56 0.55 -2 % ↗ 3.01 1.47 -68 % ↗ 1.32 0.94 -33 % ↗ 0.87 0.76 -14 % ↗ 0.47 0.53 12 % ↘
EG 14.11 15.22 8 % ↘ 1.96 9.17 129 % ↘ 3.11 3.51 12 % ↘ 5.12 5.95 15 % ↘ 6.71 6.49 -3 % ↗
LT 84.91 81.97 -4 % ↗ 6.01 36.97 144 % ↘ 11.92 15.00 23 % ↘ 29.79 32.10 7 % ↘ 24.74 24.40 -1 % ↗
DA 4.37 4.29 -2 % ↗ 3.73 4.21 12 % ↘ 2.04 2.47 19 % ↘ 2.98 3.30 10 % ↘ 3.03 3.01 -1 % ↗
UT 5.90 5.40 -9 % ↗ 0.85 4.24 133 % ↘ 3.46 4.28 21 % ↘ 7.59 6.64 -13 % ↗ 7.63 6.67 -13 % ↗
IT 0.46 0.61 28 % ↘ 0.70 0.90 25 % ↘ 0.86 1.10 25 % ↘ 2.08 2.10 1 % ↘ 0.94 0.78 -20 % ↗

RO 0.99 0.69 -35 % ↗ 2.18 1.85 -17 % ↗ 0.85 0.91 7 % ↘ 1.22 1.24 2 % ↘ 1.12 1.03 -9 % ↗
MNT 6.23 6.96 11 % ↘ 3.04 6.62 74 % ↘ 6.15 6.65 8 % ↘ 5.45 5.75 5 % ↘ 6.35 7.22 13 % ↘

Flink Groovy Hive Kafka

2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 %

AR 12.24 12.92 5 % ↘ 19.52 22.44 14 % ↘ 13.17 11.46 -14 % ↗ 16.67 16.83 1 % ↘
CTL 5.16 4.21 -20 % ↗ 7.84 6.25 -23 % ↗ 5.06 4.36 -15 % ↗ 4.55 3.96 -14 % ↗

CI 0.73 0.70 -4 % ↗ 0.77 0.74 -4 % ↗ 0.64 0.76 17 % ↘ 0.17 0.16 -9 % ↗
ET 0.04 0.10 83 % ↘ 0.51 0.32 -47 % ↗ 0.03 0.03 -12 % ↗ 0.06 0.02 -98 % ↗

ECT 16.63 19.28 15 % ↘ 64.35 58.01 -10 % ↗ 23.08 25.94 12 % ↘ 13.70 12.97 -5 % ↗
GF 0.57 2.85 133 % ↘ 5.01 6.99 33 % ↘ 5.68 6.08 7 % ↘ 3.90 11.30 97 % ↘
MG 0.80 0.87 8 % ↘ 1.03 0.85 -19 % ↗ 0.43 0.50 16 % ↘ 2.04 0.47 -125 % ↗
PS 0.10 0.03 -120 % ↗ 3.21 1.91 -51 % ↗ 0.50 0.37 -30 % ↗ 0.00 0.07 200 % ↘
RA 0.04 0.03 -31 % ↗ 3.08 1.59 -64 % ↗ 0.93 0.75 -21 % ↗ 0.06 0.13 76 % ↘
SE 0.26 0.45 52 % ↘ 3.73 3.18 -16 % ↗ 2.89 1.82 -46 % ↗ 0.17 0.57 106 % ↘
ST 0.56 0.39 -36 % ↗ 0.00 0.00 - 0.15 0.25 49 % ↘ 0.12 0.11 -6 % ↗
EG 7.21 9.16 24 % ↘ 9.38 15.24 48 % ↘ 7.30 6.23 -16 % ↗ 17.25 17.39 1 % ↘
LT 42.04 45.36 8 % ↘ 43.42 75.80 54 % ↘ 34.12 33.66 -1 % ↗ 78.91 80.87 2 % ↘
DA 3.74 3.47 -8 % ↗ 5.39 4.23 -24 % ↗ 4.49 4.28 -5 % ↗ 4.31 3.30 -27 % ↗
UT 3.31 5.32 46 % ↘ 15.29 13.66 -11 % ↗ 6.99 8.03 14 % ↘ 4.43 5.12 14 % ↘
IT 0.54 1.23 78 % ↘ 0.64 0.53 -19 % ↗ 0.60 0.89 38 % ↘ 0.29 0.38 26 % ↘

RO 0.89 0.93 4 % ↘ 2.57 1.80 -35 % ↗ 0.53 0.56 5 % ↘ 2.10 0.59 -113 % ↗
MNT 4.90 5.44 10 % ↘ 11.43 10.69 -7 % ↗ 8.70 7.45 -15 % ↗ 11.07 8.06 -32 % ↗

Karaf Wicket Zookeeper Hadoop

2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 %

AR 10.96 11.84 8 % ↘ 17.36 3.24 -137 % ↗ 8.50 9.69 13 % ↘ 9.70 9.92 2 % ↘
CTL 2.53 2.28 -10 % ↗ 2.09 0.51 -121 % ↗ 8.30 8.17 -2 % ↗ 5.61 5.12 -9 % ↗

CI 0.49 0.37 -28 % ↗ 1.29 1.20 -8 % ↗ 0.56 0.66 17 % ↘ 0.41 0.41 1 % ↘
ET 0.07 0.05 -28 % ↗ 0.11 0.00 -200 % ↗ 0.04 0.03 -36 % ↗ 0.04 0.04 -11 % ↗

ECT 37.18 36.69 -1 % ↗ 13.56 2.43 -139 % ↗ 22.19 23.76 7 % ↘ 21.41 21.31 -
GF 2.18 2.87 27 % ↘ 5.31 0.12 -191 % ↗ 4.27 5.85 31 % ↘ 6.15 6.47 5 % ↘
MG 1.97 1.81 -9 % ↗ 0.20 0.11 -63 % ↗ 2.75 2.46 -11 % ↗ 1.07 1.16 7 % ↘
PS 2.88 3.35 15 % ↘ 0.13 0.02 -152 % ↗ 0.16 0.14 -15 % ↗ 0.58 0.48 -19 % ↗
RA 0.07 0.05 -28 % ↗ 0.59 0.09 -148 % ↗ 0.68 0.47 -36 % ↗ 0.18 0.14 -22 % ↗
SE 0.56 0.90 46 % ↘ 4.52 0.62 -152 % ↗ 0.84 0.72 -15 % ↗ 1.15 1.70 39 % ↘
ST 0.35 1.33 116 % ↘ 0.00 0.04 200 % ↘ 2.00 1.77 -12 % ↗ 1.03 0.92 -11 % ↗
EG 5.83 7.49 25 % ↘ 12.86 2.27 -140 % ↗ 3.87 5.08 27 % ↘ 4.93 5.12 4 % ↘
LT 21.44 28.04 27 % ↗ 57.07 10.53 -138 % ↗ 13.09 19.60 40 % ↘ 22.38 22.99 3 % ↘
DA 1.83 1.65 -10 % ↗ 5.07 0.81 -145 % ↗ 4.23 4.20 -1 % ↗ 3.58 3.64 1 % ↘
UT 17.36 15.03 -14 % ↘ 5.41 0.65 -157 % ↗ 6.62 5.74 -14 % ↗ 4.48 4.36 -3 % ↗
IT 1.69 2.60 43 % ↘ 0.17 7.32 191 % ↘ 0.44 0.47 7 % ↘ 1.09 1.03 -5 % ↗

RO 2.32 2.23 -4 % ↗ 0.33 0.07 -130 % ↗ 2.91 2.68 -8 % ↗ 1.23 1.28 4 % ↘
MNT 5.69 6.27 10 % ↘ 5.52 1.02 -138 % ↗ 4.55 4.89 7 % ↘ 5.62 5.78 3 % ↘

Discussion:
Since developers with higher experience may fix more test smells, we fur-

ther study the correlation between developers’ experience and test smell re-
moval/addition. Following a prior study Rahman and Devanbu (2011), we
use the number of previous commits as a proxy for developers’ experience.
From the beginning of 2016 to the beginning of 2019, we mined all the com-
mits that modified the test file and calculated the test smell removal/addi-
tion for each unique contributor. Then we study the relationship between test
smell removal/addition and developers’ experience (i.e., in terms of the num-
ber of prior commits) by employing Spearman’s rank correlation coefficient.
We choose Spearman’s rank correlation since it is a non-parametric correla-

12 Dong Jae Kim et al.

Table 5: The comparison of the prevalence of test smells (i.e., the raw number
of test smell instances) for the studied systems from 2016 to 2019.

Test
Smell

Accumulo Bookkeeper Camel Cassandra Cxf

2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 %

AR 647 707 9 % ↗ 195 978 134 % ↗ 4740 6573 32 % ↗ 585 1317 77 % ↗ 2845 3219 12 % ↗
CTL 223 259 15 % ↗ 252 685 92 % ↗ 1309 1828 33 % ↗ 569 955 51 % ↗ 807 921 13 % ↗

CI 17 13 -27 % ↘ 74 130 55 % ↗ 81 153 62 % ↗ 4 23 141 % ↗ 153 163 6 % ↗
ET 2 1 -67 % ↘ 0 0 - 71 69 -3 % ↘ 0 0 - 11 11 -

ECT 814 755 -8 % ↘ 615 2079 109 % ↗ 12641 16727 28 % ↗ 1562 2795 57 % ↗ 5644 6209 10 % ↗
GF 263 265 1 % ↗ 183 555 101 % ↗ 773 1144 39 % ↗ 98 324 107 % ↗ 826 861 4 % ↗
MG 34 26 -27 % ↘ 59 131 76 % ↗ 409 442 8 % ↗ 84 160 62 % ↗ 271 278 3 % ↗
PS 5 3 -50 % ↘ 2 10 133 % ↗ 29 31 7 % ↗ 25 36 36 % ↗ 16 23 36 % ↗
RA 38 16 -81 % ↘ 2 27 172 % ↗ 37 28 -28 % ↘ 18 40 76 % ↗ 23 26 12 % ↗
SE 89 74 -18 % ↘ 1 19 180 % ↗ 321 372 15 % ↗ 20 69 110 % ↗ 418 439 5 % ↗
ST 23 26 12 % ↗ 95 125 27 % ↗ 496 456 -8 % ↘ 62 102 49 % ↗ 91 116 24 % ↗
EG 584 724 21 % ↗ 62 778 170 % ↗ 1171 1698 37 % ↗ 366 802 75 % ↗ 1302 1422 9 % ↗
LT 3514 3898 10 % ↗ 190 3137 177 % ↗ 4490 7245 47 % ↗ 2130 4324 68 % ↗ 4797 5346 11 % ↗
DA 181 204 12 % ↗ 118 357 101 % ↗ 770 1194 43 % ↗ 213 444 70 % ↗ 588 659 11 % ↗
UT 244 257 5 % ↗ 27 360 172 % ↗ 1305 2067 45 % ↗ 543 894 49 % ↗ 1479 1462 -1 % ↘
IT 19 29 42 % ↗ 22 76 110 % ↗ 324 533 49 % ↗ 149 283 62 % ↗ 183 170 -7 % ↘

RO 41 33 -22 % ↘ 69 157 78 % ↗ 320 442 32 % ↗ 87 167 63 % ↗ 218 225 3 % ↗
MNT 258 331 25 % ↗ 96 562 142 % ↗ 2318 3211 32 % ↗ 390 774 66 % ↗ 1232 1583 25 % ↗

Flink Groovy Hive Kafka

2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 %

AR 1204 3031 86 % ↗ 152 212 33 % ↗ 1721 2533 38 % ↗ 286 1692 142 % ↗
CTL 508 988 64 % ↗ 61 59 -3 % ↘ 662 964 37 % ↗ 78 398 134 % ↗

CI 72 165 78 % ↗ 6 7 15 % ↗ 84 168 67 % ↗ 3 16 137 % ↗
ET 4 23 141 % ↗ 4 3 -29 % ↘ 4 6 40 % ↗ 1 2 67 % ↗

ECT 1636 4521 94 % ↗ 501 548 9 % ↗ 3017 5734 62 % ↗ 235 1304 139 % ↗
GF 56 669 169 % ↗ 39 66 51 % ↗ 743 1344 58 % ↗ 67 1136 178 % ↗
MG 79 205 89 % ↗ 8 8 - 56 111 66 % ↗ 35 47 29 % ↗
PS 10 6 -50 % ↘ 25 18 -33 % ↘ 65 81 22 % ↗ 0 7 200 % ↗
RA 4 7 55 % ↗ 24 15 -46 % ↘ 121 166 31 % ↗ 1 13 171 % ↗
SE 26 106 121 % ↗ 29 30 3 % ↗ 378 402 6 % ↗ 3 57 180 % ↗
ST 55 91 49 % ↗ 0 0 - 20 56 95 % ↗ 2 11 138 % ↗
EG 709 2149 101 % ↗ 73 144 65 % ↗ 954 1378 36 % ↗ 296 1749 142 % ↗
LT 4135 10637 88 % ↗ 338 716 72 % ↗ 4460 7442 50 % ↗ 1354 8131 143 % ↗
DA 368 814 75 % ↗ 42 40 -5 % ↘ 587 946 47 % ↗ 74 332 127 % ↗
UT 326 1247 117 % ↗ 119 129 8 % ↗ 914 1775 64 % ↗ 76 515 149 % ↗
IT 53 288 138 % ↗ 5 5 - 79 196 85 % ↗ 5 38 153 % ↗

RO 88 219 85 % ↗ 20 17 -16 % ↘ 69 123 56 % ↗ 36 59 48 % ↗
MNT 482 1275 90 % ↗ 89 101 13 % ↗ 1137 1647 37 % ↗ 190 810 124 % ↗

Karaf Wicket Zookeeper Hadoop

2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 %

AR 156 223 35 % ↗ 941 184 -135 % ↘ 213 351 49 % ↗ 4057 6527 47 % ↗
CTL 36 43 18 % ↗ 113 29 -118 % ↘ 208 296 35 % ↗ 2344 3367 36 % ↗

CI 7 7 - 70 68 -3 % ↘ 14 24 53 % ↗ 170 269 45 % ↗
ET 1 1 - 6 0 -200 % ↘ 1 1 - 17 24 34 % ↗

ECT 529 691 27 % ↗ 735 138 -137 % ↘ 556 861 43 % ↗ 8953 14014 44 % ↗
GF 31 54 54 % ↗ 288 7 -191 % ↘ 107 212 66 % ↗ 2571 4254 49 % ↗
MG 28 34 19 % ↗ 11 6 -59 % ↘ 69 89 25 % ↗ 449 760 51 % ↗
PS 41 63 42 % ↗ 7 1 -150 % ↘ 4 5 22 % ↗ 242 314 26 % ↗
RA 1 1 - 32 5 -146 % ↘ 17 17 - 74 93 23 % ↗
SE 8 17 72 % ↗ 245 35 -150 % ↘ 21 26 21 % ↗ 480 1118 80 % ↗
ST 5 25 133 % ↗ 0 2 200 % ↗ 50 64 25 % ↗ 432 607 34 % ↗
EG 83 141 52 % ↗ 697 129 -138 % ↘ 97 184 62 % ↗ 2062 3365 48 % ↗
LT 305 528 54 % ↗ 3093 598 -135 % ↘ 328 710 74 % ↗ 9358 15116 47 % ↗
DA 26 31 18 % ↗ 275 46 -143 % ↘ 106 152 36 % ↗ 1499 2393 46 % ↗
UT 247 283 14 % ↗ 293 37 -155 % ↘ 166 208 22 % ↗ 1872 2865 42 % ↗
IT 24 49 68 % ↗ 9 416 192 % ↗ 11 17 43 % ↗ 455 680 40 % ↗

RO 33 42 24 % ↗ 18 4 -127 % ↘ 73 97 28 % ↗ 516 841 48 % ↗
MNT 81 118 37 % ↗ 299 58 -135 % ↘ 114 177 43 % ↗ 2351 3798 47 % ↗

tion test that does not assume the underlying data distribution. We found
a positive correlation (i.e., 0.53) between test smell addition and developers’
experience and found a negative correlation (i.e., -0.57) between test smell
removal and developers’ experience. The correlation analysis suggests a non-
negligible correlation that experienced developers are more likely to add more
test smells and remove fewer test smells. One potential explanation for our re-
sult is that even highly experienced developers often do not refactor test smells
due to lack of awareness or benefits, which aligns with a prior survey (Peruma
et al., 2019). Another reason may be that most experienced developers work
on the most often exercised and most complex part of the system (Zeller,
2009). To corroborate our result, we study the relationship between the size

Title Suppressed Due to Excessive Length 13

of code changes (i.e., lines of code and deleted) and developers’ experience.
We employ quantile-based correlation, where we split developers into four dif-
ferent quantiles based on experiences and studied their correlation with code
size. Our result shows an increase in the correlation between experience and
code size (i.e., 0.26, 0.50, 0.67, and 0.70). Therefore, we observe that the high
expertise team may not necessarily remove more test smells because they may
be responsible for larger and more complex changes.

Although the number of test smells increases as the systems evolve, after
normalization against TestLOC , the test smell density generally remains
stable. We also find that some types of test smell, such as Eager Test,
Ignored Test, Unknown Test, Lazy Test, and Sleepy Test, have one of the
largest increase in terms of test smell density in most studied systems. In
contrast, Exception Catch/Throw, Redundant Assertion, and Print State-
ment have the largest decrease in terms of test smell density in most studied
systems.

3.3 RQ2: What is the motivation behind removing test smells?

Motivation: A recent study (Garousi and Küçük, 2018) claims that develop-
ers perceive test smell as harmful in software systems. In contrast, other studies
reveal that developers are unaware of test smells and do not acknowledge the
benefits of refactoring them (Junior et al., 2020a; Tufano et al., 2016). Never-
theless, there is limited empirical support on test smell removals, whether a test
smell vanishes as a side-effect of code evolution or is a deliberate refactoring
target. Such evidence is necessary to reveal the current perception developers
may have on test smells. Hence, we perform a qualitative study on the test
smell removing commits to identify reasons that prompt developers to fix the
test code with test smells and the mechanisms employed to address test smells.

Approach: We conduct a qualitative study on commits removing test smells.
We leverage Git to extract all the commits except for the merge commits be-
tween 2016 and 2019. We only keep the commits that include test file modifica-
tions and discard the other commits from further analysis. A commit modifies
a test file if the involved files have the extension “.java” and have a prefix or a
suffix of ”[Tt]est(s*)”. For each of the commits, we run tsDetector on the two
versions of the software (i.e., every two consecutive commits) and calculate
the raw test smell differences.

To understand why developers remove test smells, we look at a combination
of bug reports, commit messages, test code, and the commit history of relevant
test code. In the studied samples, 241 commits (80%) includes issue ID from
the Jira bug report, and 25 commits (8%) use GitHub’s pull request/issue
tracking. The remaining 34 commits (11%) only contained commit messages,
which contained sufficient information to understand the reason behind test

14 Dong Jae Kim et al.

Table 6: A summary of our manual analysis on the commits of test smell
removal, i.e., 304 sampled commits minus 12 commits that are incorrectly
flagged by the test smell detection tool. Our analysis focuses on the context of
each commit and how the test smell is addressed in the commit. In particular,
we show the association between test code changes and the corresponding
maintenance activities that developers apply.

Maintenance Activities

Refactoring
Test Code

Feature Im-
provement

Bug Fixing Feature
Addition

Others Total #

Code change

TEST SMELL AWARE REFACTORING

Exception Catch/Throw 9 4 3 5 - 21
Sleepy Test 9 4 1 1 - 15
Unknown Test - 3 1 1 2 7
Assertion Roulette 1 - 1 - - 2
Sensitive Equality - - 2 - - 2
Magic Number 1 - - 1 - 2
Conditional Test Logic - 1 - - - 1

Total 20 12 8 8 2 50

TEST SMELL UNAWARE REFACTORING

Persistence 10 22 12 13 1 58
By-Product Removal 20 18 22 10 5 75

Total 30 40 34 23 6 133

OTHER CODE CHANGES

Test Code Deletion 13 33 30 20 1 97
Add Comment/@Ignore 2 1 1 3 - 7
Revert a Commit - 1 3 1 - 5

Total 15 35 34 24 1 109

#Total 65 87 76 55 9 292

code changes. Such commit messages may include keywords like ”Refactor” or
”Fix test speed.” Using the artifacts above, we answer two types of questions:
1) What kind of maintenance activity initially prompted developers to address
test smells (i.e., the main purpose of the commit)? 2) How is the test smell
addressed (e.g., deliberate refactoring or by-product of other maintenance ac-
tivities)? We used the two preliminary inquiries to gain further insight into
developers’ awareness of the most common reason for removing test smell.

In the analysis, we take a statistically significant sample of the commits
removing test smells. In particular, we apply stratified random sampling on
these commits with a 95% confidence level and a 5% confidence interval. We
adopted stratified sampling to sample the test smells in each studied system
independently, which can be advantageous to reduce sampling error when a
subpopulation within the overall population varies (Zhao et al., 2019). The first
two authors examine the sample independently. Any disagreement is discussed
until reaching a consensus. To assist our qualitative study, we leveraged a tool
called Refactoring Aware Commit Review (Tsantalis et al., 2018), which is
a code diff visualization tool for showing the refactoring activities applied
between two commits.

Title Suppressed Due to Excessive Length 15

Results: In total, we manually analyzed 304 commits from a total of 1,452
commits (achieving a 95% confidence level with a 5% confidence interval).
Table 6 shows a two-dimensional summary illustrating the association between
the maintenance activities that initially prompted developers to maintain test
code (horizontal dimension) and the type of specific test code changes (vertical
dimension) that developers applied when removing test smells. We also found
12 incorrectly detected test smell instances by tsDetector, i.e., a 4% false-
positive rate, and excluded them in Table 6.

For the maintenance activities (horizontal), we uncover five categories that
prompted developers to maintain test code. Four of the five categories are:
refactoring test code (65 commits), feature improvement (87 commits), bug
fixing (76 commits), and adding new functionality (55 commits). The remain-
ing nine commits (i.e., the fifth category - “others”) consist of the ones that
we cannot identify clear motives due to insufficient documentation (e.g., low-
quality commit messages and bug reports). As an example, in CXF (bcb6385a),
the developer addresses a test smell (i.e., Ignored Test) by completing the test
implementation. However, the test case was ignored when it was first intro-
duced to the codebase years ago and did not reference any bug report. Thus,
it is difficult to label the correct maintenance motives.

We classify the type of test code changes (vertical) into three categories:
Test Smell Aware Refactoring (50 commits), Test Smell Unaware Refactor-
ing (133 commits), and Other Code Changes (109 commits). We classify a
commit in the category of Test Smell Aware Refactoring if developers directly
addressed the test smell. We classify a commit as a Test Smell Unaware Refac-
toring if the test smells are removed as a side-effect of other activities. Test
Smell Unaware Refactoring consists of two subcategories: Test Smell Persis-
tence and By-product Removal. The Test Smell Persistence (58 commits) shows
instances of applying standard code refactoring, such as extracting common
test code, where test smells are transiently relocated to another test class. The
By-product Removal (75 commits) represents the cases when the test smell is
removed due to refactoring and maintenance of other tasks (e.g., removing du-
plicate source code). We group the remaining commits that remove test smells
but are not test smell specific refactoring into the “Other Code Changes” (109
commits). These commits made changes such as deleting test code, disabling
tests (commenting or ignoring code), and reverting a commit.

In the following subsections, we discuss our qualitative analysis results of
the three high-level test smell removal categories.

Test Smell Aware Refactoring

Although less frequent, we find that developers directly refactor specific test
smells in 50 out of 292 (17%) studied commits. As shown in Table 6, these
commits are related to removing Exception Catch/Throw (21 commits), Sleepy
Test (15 commits), Unknown Test (7 commits), Assertion Roulette (2 com-
mits), Sensitive Equality (2 commits), Magic Number (2 commits), and Con-
ditional Test Logic (2 commits). By looking into the vertical dimension (i.e.,
the context of the commits), we find that Test Smell Aware Refactoring hap-

16 Dong Jae Kim et al.

pen more frequently during test refactoring commits (20/50), but developers
also deliberately address test smells during other maintenance activities (e.g.,
feature improvement and bug fixing).

However, not all test smell removing commits are deliberately fixed by
developers. Therefore, we also report the proportion of test smell ”fixing”
commits (i.e., deliberately fixed by developers) over the number of test smell
removing commits in our stratified samples (i.e., all commits that remove the
specific test smell), which shows the true proportion of the fixed test smells.
In this case, even though Exception Catch/Throw has the highest number
of test smell removing commits, only 31% were fixed test smell instances.
Sleepy Test has the highest number of intentional fixes (60%) compared to
other test smells. 21% of Unknown Test, 12.5% of Sensitive Equality, 5.1%
of Magic Number, 2.9% of Assertion Roulette, and 1.9% of Conditional Test
Logic are deliberately fixed by developers. Our findings show that, in the
studied systems, developers are more likely to fix Sleepy Test and Exception
Catch/Throw due to the existence of test smell instead of other maintenance
activities.
Refactor Sleepy Test. 15 out of the 292 (5%) commits are related to refac-
toring the Sleepy Test test smell. This finding shows that developers deliber-
ately fixed 60% of removed Sleepy Test. This test smell occurs when developers
explicitly cause a thread to sleep, leading to unexpected results as the process-
ing time for a task can differ on different devices (Meszaros, 2007). We find
that developers often remove Sleepy Test due to unexpected test behavior and
increased test time. For example, in Kafka (7b7c4a7), a developer mentions
that:

“The timeouts are often large (e.g., 10 seconds) and still occasionally they
trigger prematurely. They need to be replaced by waitUntilTrue and some logic
that checks when processing in streams is complete”.

In another example, a developer in Camel (722e590c) mentions that “[u]se
awaitility for testing where we otherwise use thread sleep which can be speeded
up.”. We find developers often apply two approaches to address Sleepy Test.
One is to use waitFor() condition in the Java Awaitility library and the other
is to refactor the test smell using Java’s Future library. These two approaches
allow the test case to run asynchronously without blocking.

As presented in Table 4 (RQ1), while Sleepy Test accounts for one of the
most prevalent test smells, we find in our manual study that developers also
allocate some efforts to refactor such smells. The awareness for Sleepy Test
may be a result of the increase in attention for the unreliability in test code
qualities (e.g., flaky tests) (Eck et al., 2019; Lam et al., 2019; Shi et al., 2019).
Moreover, we find that developers may also be concerned with an increased
test execution time caused by calling thread.sleep(). Future research is needed
to understand further developers’ awareness and opinion on the consequences
of Sleepy Test.
Refactor Exception Catch/Throw. We find that 21 out of the 292 (7.2%)
commits are related to refactoring the Exception Catch/Throw test smell. This
finding shows that developers deliberately fixed 31% of the removed Exception

Title Suppressed Due to Excessive Length 17

Catch/Throw. As discussed in a previous paper (Peruma et al., 2019), this test
smell occurs when the passing or failing of the test is dependent on custom
exception handling code or exception throwing instead of using JUnit’s ex-
pected attribute. In this category, developers deliberately refactored the test
smell in 10 commits, and the remaining were refactored during other main-
tenance activities: feature improvement (3 commits), bug fixing (3 commits),
and feature addition (5 commits). As shown in Listing 1, developers remove
the code logic in the catch block that determines the passing and failing of
the test case. The developers mentioned in the bug report that using fail in
the catch block is a bad programming style and masks the details of the stack
trace2. After removing the test smell, a new test smell (i.e., unknown test) is
introduced. We have also seen other similar cases in our study, where a new
test smell is introduced after developers resolved the current test smell. Our
finding shows that developers are sometimes unaware of the test smells; thus,
they are likely to introduce new test smells when addressing existing ones. In
short, our manual study finds that developers are more likely to refactor the
Exception Catch/Throw test smell during various maintenance tasks. We also
find that these test smells removal is often not associated with test failures
but improves future maintainability.

Listing 1: Developers removed the dependency of test outcome on exception
handling code (Flink - e83217bd).

1 @Test

2 public void testZeroSizeHeapSegment() {

3 - try{

4 MemorySegment segment = new HeapMemorySegment(new byte[0]);

5 testZeroSizeBuffer(segment);

6 testSegmentWithSizeLargerZero(segment);

7 - }

8 - catch (Exception e) {

9 - e.printStackTrace();

10 - fail(e.getMessage());

11 - }

12 }

Unknown Test. 7 out of 292 (<3%) commits are removal of test smell called
Unknown Test. This finding shows that developers deliberately fixed 21% of
the removed Unknown Test. This test smell occurs when test cases do not
contain any logic or assertions statements. Thus, it is challenging to compre-
hend what the role of the test case is. As an example, in Kafka (7d6ca52a),
the test class called JmxReporterTest.java is added three years ago. However,
three years after its creation, the developers noticed missing test code while
working on other tasks and immediately addressed it. Similarly, as mentioned
in CXF (bcb6385), developers completed the missing test implementation two
years ago. Thus, our finding suggests that there might be other instances of

2 https://github.com/apache/flink/pull/4446

18 Dong Jae Kim et al.

the Unknown Test, where developers may only notice them while maintaining
other tasks. One potential reason for adding Unknown Test code may be that
in feature additions, the Unknown Test gets added to prepare for the future
implementation. This is illustrated in CXF (2705f4d), [CXF-7525] Complet-
ing the system test, where developers initially only provided empty test cases
when implementing the feature and later complete the test case. While adding
Unknown Tests may serve as code documentation to describe what test cases
should be implemented in the future; developers may forget to complete the
test case and become technical debt (Pham and Yang, 2020; Sṕınola et al.,
2019).
Refactor Sensitive Equality. We find that developers refactor the Sensitive
Equality test smell in 2 out of 292 (<1%) commits. The finding shows that de-
velopers deliberately fixed 12.5% of the removed Sensitive Equality. This test
smell occurs when the test method verifies objects by invoking the toString()
method. The potential consequence of the test smell is that the change in
the implementation of toString() might result in test failure (Meszaros, 2007).
We find a similar discussion in Flink (390d3613), “rerollercoasting through
abstraction layer; we don’t really know what the implementation is by call-
ing tostring?”. Thus, our findings show that developers may be aware of the
inherent issues associated with using a default method with unknown imple-
mentation.

In the commits, while there were a total of 16 samples of the removed
Sensitive Equality, only 2 out of 16 commits (12%) reflected an awareness of
the test smell (in other cases, developers delete the entire test method or move
the whole test code to another test case). It may be because the use of the
default toString() is intuitive from both its purpose and naming convention,
and thus, developers may not have an immediate incentive to address the test
smell until the test fails.
Refactor Magic Number. We find that developers refactor Magic Number
in 2 out of 292 (<1%) commits. This finding shows that developers deliberately
fixed 5.1% of the removed Magic number. This test smell occurs when assert
statements in a test method contain numeric literals (i.e., Magic Numbers)
as parameters. Magic Number does not indicate the meaning/purpose of the
number. Hence, they should be replaced with constants or variables, thereby
providing a descriptive name for the input (Meszaros, 2007). As an example
in Kafka (7ebc5da6), the test smell was refactored after a feature addition,
which involved explicitly replacing the Magic Number with a variable with a
more meaningful variable name to improve code comprehension.
Refactor Assertion Roulette. We find that 2 out of 292 (<1%) commits
are from refactoring Assertion Roulette (AR). The finding shows that develop-
ers deliberately fixed 2.9% of the removed Assertion Roulette. This test smell
occurs when the test method has several assertion statements making it chal-
lenging to determine which assertion had failed (Meszaros, 2007). Although
prior work (Deursen et al., 2001; Meszaros, 2007) proposes using an asser-
tion explanation to refactor the test smell, we find that developers may also
remove the test smell using another assertion statement. Figure 3 shows an

Title Suppressed Due to Excessive Length 19

Fig. 3: Assertion refactoring, removing duplicate assertion and Assertion
Roulette test smells. Located in the commit 3b42fb5 from Apache Karaf.

example where assertContain is used to remove both Assertion Roulette and
duplicate assertion test smell. In this case, developers attempt to mitigate the
test code’s verboseness by refactoring with assertions, which helps to remove
the test smells.

Conditional Test Logic. We find that 1 out of 292 (<1%) commits refactor
Conditional Test Logic. The finding shows that developers deliberately fixed
1.9% of the removed Unknown Test. This test smell occurs when the test
case’s success or failure depends on the assertion method within the control
flow blocks and thus not predictable (Meszaros, 2007). A prior survey (Garousi
and Küçük, 2018) noted that developers prefer to consider it is smelly or not
on a “case-by-case basis”. Our study also finds that developers typically do not
refactor Conditional Test Logic. For the only case that we found, developers
refactored the test smell when there are nested conditional statements. In
Kafka (7ebc5da6), shown in the code snippet below, the developer simplifies
the test smell’s verbosity with assertion statements. Namely, assertThat() &
is() is used to improve the readability of the test logic.

1 @Test

2 public void checkTypeInformation() {

3

4 - if(tupleType.isTupleType()) {

5 - if(!((TupleTypeInfo<?>)tupleType).equals(testTupleType)) {

6 - fail("Tuple type information was not set correctly!");

7 - }

8 - } else {

9 - fail("Type information was not set to tuple type information!");

10 - }

11 + assertThat(tupleType.isTupleType(), is(true));

12 + assertThat(tupleType, is(equalTo(expectedType)));

13

14 }

20 Dong Jae Kim et al.

Although less frequent, we find that developers deliberately refactor spe-
cific test smells in 50 out of 292 (17%) studied commits. In particular,
Exception Catch/Throw and Sleepy Test are the two most commonly refac-
tored test smells. Based on the discussion in bug reports and commit mes-
sages, we find that developers are often aware of the sub-optimal practice
of using Thread.sleep and spent efforts on improving the design of exception
handling mechanisms. Even though the number is less, we also find some
refactoring of other test smells, such as the Unknown Test, Magic Number,
Sensitive Equality, Conditional Test Logic, and Assertion Roulette.

Test Smell Unaware Refactoring

Most test smells (133/292, 45%) are not removed by developers but are either
relocated or deleted as consequences of other refactoring activities. We clas-
sify such commits as Test Smell Unaware Refactoring since developers were
unaware of the test smells and removed them as a by-product of other mainte-
nance tasks, such as refactoring, feature improvement, feature addition, or bug
fixing. In our manual analysis, we find that Test Smell Unaware Refactoring
may affect the test smells in two ways: 1) The test smells are relocated to
another codebase, i.e., test smell persistence. 2) The test smells are removed
unintentionally due to cascading results of other source code refactoring ac-
tivities. Below we discuss the two categories in detail.

Test Smell Persistence. We find that for 58 out of 292 (20%) commits, test
smells were relocated to other codebase locations. In this case, test code may
undergo various refactoring activities such as introducing inheritance (19 com-
mits), extracting method (25 commits), extracting class (10 commits), replac-
ing method with the existing helper (2 commits), and moving method/class (2
commits). For example, in CXF (31a4a55), developers applied two refactorings
(i.e., extract superclass and pull up method) to the test case JCacheOAuth-
DataProviderTest to extract common test code. However, four existing test
smells (i.e., Assertion Roulette, Conditional Test Logic, Duplicate Assertion,
and Magic Number) in the test code are relocated to the new test case as a
result of the refactoring. Namely, developers did not remove the test smells
during test code refactoring. In some cases, relocation may magnify test smell’s
effect. For example, in Hive (14e92703), while the developer fixes a bug associ-
ated with test failure, the developer extracts a reusable method that explicitly
causes a thread to sleep and relocates code to a method in a test utility file.
The method was then used in three other test cases, thus magnifying the test
smell’s impact.

By-Product Removal. We find that for 75 out of 292 commits (25%), test
smells are removed by developers as a cascading effect of source code changes.
Such maintenance activities include feature improvement, adding features, and
bug fixing (i.e., the horizontal view in Table 6). For example, a commit in
Accumulo (9dadca0f) implements a new feature and refactors the source code
using a builder design pattern. As a result of the source code changes, one test
smell instance of eager test (i.e., calling multiple source code methods in a test

Title Suppressed Due to Excessive Length 21

case) is removed since the test case now calls the builder method instead of
invoking four distinct methods.

In summary, we find that developers may refactor test code while perform-
ing other maintenance activities. Developers may refactor for future main-
tainability or as a necessary precursor for change in feature requirement. For
example, to support new features in the source code, developers may refactor
test code to accommodate common logic in test code and apply code reuse.
However, in most cases, test smells were unintentionally removed by test code
relocation or diffusion as a side-effect of these maintainability tasks. Our find-
ings show that developers are unaware of test smells and may not actively
remove test smells as systems evolve.

We find that developers often refactor test code, but they may not directly
remove test smells. Many manually studied test smells (133/292, 45%) are
relocated or removed unintentionally by developers while refactoring test
code.

Other Maintenance Activities

We find that test code may be deleted as a system evolves. The majority of test
smell removals are related to test code deletion. 109 out of 292 (37%) commits
belong to the category Other Code Changes. We classify a commit into this
category when the removed test smell results from deleting test code, disabling
test (ignoring/commenting out), or reverting a commit.

Test Code Deletion. In our study, we find that for a non-trivial number of
commits (97/292 commits, 33%), the test smells are removed because the test
code is deleted. Developers may delete a test case when it becomes redundant
or obsolete. For example, in Flink (e671f34), while porting source code to
another file, developers discuss the removal of test cases since the other file
already has similar test cases. Developers sometimes also delete test cases
when they become obsolete or hard to maintain as the system evolves. For
example, in Accumulo (c265ea5b), the test code becomes irrelevant since the
corresponding features under test are unstable and removed. Therefore, the
test smells in the test code are also removed.

Add Comment/@Ignore. 7 out of 292 (2%) commits are related to com-
menting out or ignoring the test code. This category represents removing test
smells as a result of temporarily disabling the test code. In general, we find
that developers may comment out the entire test case to bypass test failure.
For example, in Kafka (ca1f18e), developers commented out the test code to
temporarily make the test pass since the test would only work after developers
migrate to Java 9. As another example, in Camel (9ad68066), the test case is
ignored due to test failure caused by a recent upgrade to jetty 9.3. Although
the test smell is removed due to commenting or ignoring the test code, the
test smell is not addressed. Lastly, we also see cases where the commented
out test case was only brought back a few months later. Future studies should

22 Dong Jae Kim et al.

also investigate if such commented out test cases are re-enabled or become a
technical debt in the system (Pham and Yang, 2020).
Revert a Commit. 5 out of 292 (<2%) commits are related to reverting
the test code. This category represents removing test smells as a result of
temporarily reverting software to the previous versions. For example, in Wicket
(266c90037), the system was reverted due to a defect caused by adding new
features. Thus, the newly introduced test smell was also reverted.

We find that as the system evolves, test code and its associated test smells
may be deleted due to the obsoleteness and maintenance difficulty of the
source/test code. Developers may also temporarily comment out test cases
to bypass test failures caused by recent code changes. However, we see
instances where developers only bring the commented out test code back
after several months or years.

Summary & Implication. Our manual study shows that, in most cases,
developers may not be aware of the test smells. We find that 82.9% of the
studied test smells are removed, relocated, or disabled (e.g., commented out)
as a by-product of other maintenance activities. During these refactoring ac-
tivities, developers may relocate the test smell to another test case, and the
test smell remains unchanged. In some cases, as discussed, the impact of test
smell may become larger, as the test code that contains test smells is extracted
to become a utility method. Nevertheless, we still find that developers delib-
erately removed test smells in 16% of the studied commits. In particular, we
find that developers are more likely to remove Exception Catch/Throw and
Sleepy Test. Our finding suggests that, although developers may refactor test
code, they often do not deliberately remove test smells. In the next RQ, we
further investigate the relationship between test smells and software quality.

3.4 RQ3: What is the relationship between test smells and software quality?

Motivation: Although researchers have made a necessary step towards un-
derstanding the maintainability aspects of test smells (Bavota et al., 2015;
Bleser et al., 2019; Junior et al., 2020a; Peruma et al., 2019), it is still not
clear whether removing test smells has an effect on the quality of software.
In the previous RQ, we find that in addition to deliberately resolving test
smells, test smells are commonly removed as by-products of other mainte-
nance activities, such as deleting the test code entirely. Regardless of how the
test smells are removed or relocated (RQ2), the removed test smells are no
longer impacting the source code files. However, it remains unknown whether
test smells have any relationship with the code quality. Hence, in this RQ, we
aim to understand further the relationship between test smells and software
quality, particularly the post-release defect. Our finding may help identify the
types of test smells that correlate with a post-release defect and inspire future
research that helps developers efficiently address more test smells.

Title Suppressed Due to Excessive Length 23

Approach: Our goal is not to predict defects but to study the additive ef-
fect of test smell metrics on post-release defects over-controlled metrics using
logistic regression models.3 Logistic regression models are commonly used in
prior research to study the effect of various software metrics on post-release
defect (Bird et al., 2011; Chen et al., 2012; de Pádua and Shang, 2018). Below,
we define the metrics that we use and the model building process. The metrics
are extracted from 197 total official releases.

Studied Metrics & Data Collections

– Post-Release Defects. The post-release defect is our response metric in
the regression model. The post-release defect is defined as the defects re-
ported within a fixed time frame after a certain version of a software is
released (Moser et al., 2008; Munson and Khoshgoftaar, 1992; Piotrowski
and Madeyski, 2020). For each source code file, we label it as defect prone
if the file is modified at least once in bug fixing commits within six months
after the release of the software system (Zimmermann et al., 2007). Devel-
opers in the studied systems are required to enter the issue ID in commit
messages. Thus, we first query the issue tracker to obtain a list of bug
reporting issues within six-month of each release date. We then find all the
bug-fixing commits based on whether the commit messages contain one of
the obtained issue IDs. At the end of the step, we obtain the list of source
code files that contain post-release defects (e.g., TRUE or FALSE). Finally,
if a test file tests a source code file that contains a post-release defect, we
label the test file as defect-prone.

– Traditional Product and Process Metric. Similar to prior studies,
we control for traditional product and process metrics in our regression
model. Previous studies found that traditional product metrics (e.g., lines
of code) and process metrics (e.g., code churn and pre-release defect) are
good explainers for post-release defects (Moser et al., 2008; Nagappan and
Ball, 2005; Nagappan et al., 2006) and are commonly used as baseline
metrics (Bird et al., 2011; Chen et al., 2012; D’Ambros et al., 2010). We
collect these metrics at the test-file level and use them as a baseline to build
a BASE model. We later add test smell metrics to the BASE model and
study whether the test smell metrics may further explain a source code file’s
defect-proneness. Although our metrics may not represent all of the met-
rics, they are shown to have a high correlation with other complexity met-
rics and used for benchmarking in prior proposals of new metrics (Biyani
and Santhanam, 1998; Chen et al., 2017; D’Ambros et al., 2010). For the
traditional product metric, we used CLOC (AlDanial, 2019) to extract
the LOC metric in the test file. For traditional process metrics, we use
commands “git follows” and “git diff” to extract three different code churn
metrics: file churn, code churn, and deleted lines of code. File churn is the
number of commits that modified the file. Code churn is the total number
of code lines, such as code deletion, addition, and modification. Finally,

3 Logistic Regression from Lrm R package.

24 Dong Jae Kim et al.

code deletion is the total lines of code deleted. For the other process met-
ric, namely the pre-release defect metric, we follow a similar approach to
extracting post-release defects using a six-month time window before one
software release.

– Coupling Metric. In addition to the traditional product and process
metrics, we also add two coupling metrics (namely COUPLING) as our
controlled metrics to the BASE model to reduce the effects of confound-
ing variables. We measure two coupling metrics, ts coupling (i.e., a test
case to source code) and tt coupling (i.e., test cases to test cases), in test
cases, which are used in prior studies to assess the quality of test code
design (Child et al., 2019). We exclude the dependencies with external
frameworks or libraries when calculating the coupling metrics.

– Test Smell Product and Process Metrics. We consider both test smell
product and process metrics. Test smell product metrics (TEST PROD-
UCT) are the number of detected test smells present in the system’s current
release. Test smell process metrics (TEST PROCESS) are the number of
test smells added and removed six months before releasing the system. Note
that we extract the two metrics for each type of test smells (18 types in
total). Calculating test smell process metrics can be challenging due to file
deletion and rename. To address these challenges, we use the “git follow”
to keep track of package change and file renaming. Since test smells are
detected at different granularities, such as line, method, and class level, we
aggregated the test smells at the file-level.

Model Construction
We use a logistic regression model to model post-release defect because it is
easier to interpret and is widely used in prior studies (Chen et al., 2017; Har-
rell Jr, 2015; Kuhn and Johnson, 2013; Nagappan and Ball, 2005). Logistic
regression can better isolate (with a predominantly additive effect) the effects
of the test smell metrics on explaining post-release defect over the BASE model
(i.e., an improvement on the model fitness) (Harrell Jr, 2015). In particular, we
build an initial model using the baseline metrics (i.e., traditional process and
product metrics and coupling metrics). Then, we build a series of new models
to add TEST PRODUCT and TEST PROCESS over the BASE model. By
studying the explanatory power of a series of models and their additive effects
of test smell metrics, we explore whether test smell contributes to a better
explanation of post-release defect. We build three models for each studied sys-
tem:

BASE (LOC+CHURN+PRE+COUPLING): The baseline model uses
the traditional product, process, and coupling metrics.
BASE+TEST PRODUCT: We add TEST PRODUCT to the BASE model
and measure the improvement in the explanatory power over the BASE model.
BASE+TEST PRODUCT+TEST PROCESS: The third model mea-
sures the combined effect of TEST PRODUCT and TEST PROCESS metrics
over the BASE model.

Title Suppressed Due to Excessive Length 25

For each model that we construct, we first apply data transformation to
reduce the data skewness. We follow prior studies using log-transformation on
the metrics to normalize the data (Chen et al., 2012; de Pádua and Shang,
2018). Second, we remove the metrics with a zero variance because these met-
rics do not contribute to the model (i.e., the values are constant). Third, we
apply redundancy analysis to drop predictors that can be predicted based on
a model composed of all other predictors with an adjusted R2 of higher than
0.9.4 Since some metrics may be correlated and cause the problem of multi-
collinearity and overfitting (Harrell Jr, 2015; Jiarpakdee et al., 2018; Wang
et al., 2018), we use Variance Inflation Factors (VIFs) to detect the collinear-
ity among the metrics (Kuhn and Johnson, 2013). A high VIF value reflects
an increase in the variance due to collinearity in the data. If a metric has a
VIF value larger than 10, we remove the metric from the model (Kuhn and
Johnson, 2013).5

Model Assessment Process
Our goal is not to predict post-release defect, but rather to study the explana-
tory power of the test smell metrics. Thus, we adopt three different model as-
sessment techniques (probability of defect-proneness, Wald χ2 test, and area
under the curve; AUC) to understand the relationship between test smell and
post-release defect.

First, we study the contribution of individual TEST PRODUCT and TEST -
PROCESS metric by looking at proportions of χ2 for each metric relative to
the total χ2 of the model. χ2 is a likelihood ratio test to identify how much
a metric contributes to the model’s fitness. The higher χ2 indicates a higher
explainability of the metric (i.e., more important) in the model (de Pádua and
Shang, 2018; Harrell Jr, 2015). Finally, we use AUC, the area under the Re-
ceiver Operating Characteristics (ROC), to compare nested logistic regression
to capture the relationship between the explanatory metrics and the source
code’s defect-proneness file (Harrell Jr, 2015). AUC measures the fitness of
the model. An increase in AUC when new metrics are added to the model
indicates that the new model has a higher ability to capture the relationship
and a better fitness (i.e., there is a correlation between the added metrics and
defect-proneness, after controlling for the baseline metrics).

Second, we study the effect size of test smell metrics on the probability
of defect-proneness (Moser et al., 2008; Shang et al., 2015). To quantify the
effect, we set all of the model’s metric values to their mean value and record the
probability of defect-proneness. Then, we increase the value of the metrics in
which we want to measure the effect (i.e., test smell metrics). For each subject
metric, we increase the value by 125% and 150% of its mean value and re-
calculate the probability of defect-proneness after the increase and report the
percentage difference. A positive value indicates that increasing the metric’s
value increases the probability of the post-release defect. A negative value

4 Redundancy analysis from the Hmisc R package.
5 VIF analysis from RegClass R package.

26 Dong Jae Kim et al.

indicates that increasing the value of the metric decreases the likelihood of the
post-release defect. The intuition behind the analysis is to understand which
metric contributes more to the explainability of the software defects while
controlling for other metrics (de Pádua and Shang, 2018).

Results: The explanatory power of test smell metrics in regression
models. Adding test smell metrics increase the AUC of the model by an av-
erage of 8.25% over the BASE model. Table 9 – 13 show the details of the
regression models, where we show the additive effects of test smell features
over the baseline metrics. We move the tables to the appendix to make the pa-
per more concise. We show the proportion of χ2 to understand the importance
of including the metric on the model fitness. We show the AUC to understand
whether our test smell metric contributes to a higher ability to capture the
relationship on the post-release defect over baseline metrics. We find that in
all of the models, the AUC increases by 5.1% over the baseline when adding
TEST PRODUCT metrics; and there is around 8.25% increase in AUC over
the baseline when adding both of the TEST PRODUCT and TEST PROCESS
metrics. Although the increase is small, we see a consistent result in all the
studied systems except Wicket (as discussed in RQ1, Wicket experienced ma-
jor refactoring in 2019, which may affect the modeling results). Our results
also show that adding TEST PROCESS metrics have only a small increase in
the model’s explainability after considering the baseline metrics and TEST -
PRODUCT. The potential reason may be that, as shown in RQ2, developers
may remove or add a test smell as a by-product of other refactoring activi-
ties. Therefore, there may be noises in the TEST PROCESS metrics. Lastly,
for the proportion of χ2, we find that the explainability of test smell metrics
varies from system to system. However, we see that test smell metrics such
as Conditional Test Logic, Constructor Initialization, Exception Catch/Throw,
Mystery Guest, Resource Optimism, Assertion Roulette, Eager Test, and Lazy
Test have higher explainability across the studied systems. In short, these test
smells may have a higher correlation with the defect-proneness of source code
files.

The effect size of test smell metrics on defect-proneness. Most test
smell metrics have minimal effect on defect-proneness. The analysis men-
tioned above shows the explainability of the metrics but not the effect. Hence,
we further study the effect of each test smell metric. Table 14– 15 show the
effect size of the TEST PRODUCT and TEST PROCESS metrics on post-
release defects for the studied systems. As discussed in the approach section,
we measure the effect size by increasing individual test smell metrics while
keeping all other metrics at the mean value. We find that the effect size and
direction (i.e., positive or negative) of the effect vary from system to system.
However, the effects of most test metrics on the defect-proneness are minimal
(i.e., less than 1% increase in the probability of defect-proneness when 150%
increases the value of the test smell metric). Compared to TEST PROCESS
metrics, TEST PRODUCT metrics, in general, have a slightly larger positive
relationship with source code defect-proneness. Among all test smell metrics,

Title Suppressed Due to Excessive Length 27

we find that Exception Catch/Throw and Conditional Test Logic show the
highest positive relationship in the majority of the studied systems. The find-
ings imply that more Exception Catch/Throw and Conditional Test Logic in a
test case may lead to a higher probability of having a post-release defect in its
corresponding source code file. The analysis result on Exception Catch/Throw
also echoes our finding in RQ2. We found that developers are more likely to
refactor Exception Catch/Throw when maintaining test code. On the other
hand, in RQ2, we only observed one commit that addressed Conditional Test
Logic. Prior research (Peruma et al., 2019) found that developers do not nat-
urally think of Conditional Test Logic as a problem. Hence, future studies
are needed to evaluate further the effect of this test smell on software qual-
ity. Finally, one possible reason for the high variability in effect size of the
TEST PROCESS metric compared to the TEST PRODUCT metric could be
that many of the test smells were removed as a by-product in the effort to
improve test code maintainability (as found in RQ2). Thus, future research
on test smell should consider those by-product removals and relocation when
designing the study.

Table 7: The comparison of the area under (a ROC) curve for the studied
systems. The model is trained using the system in the first column, and AUC
is calculated using the system depicted in the remaining columns.

A
cc

um
ul

o

B
oo

kk
ee

pe
r

C
am

el

C
as

sa
nd

ra

C
xf

Flin
k

G
ro

ov
y

H
ad

oo
p

H
iv
e

K
af

ka

K
ar

af

W
ic
ke

t

Zoo
ke

ep
er

Accumulo 0.73 0.61 0.52 0.68 0.62 0.63 0.59 0.60 0.53 0.66 0.59 0.59 0.60
Bookkeeper 0.62 0.87 0.62 0.64 0.58 0.64 0.71 0.54 0.58 0.61 0.61 0.58 0.51
Camel 0.60 0.65 0.75 0.63 0.68 0.64 0.51 0.61 0.52 0.66 0.49 0.69 0.62
Cassandra 0.67 0.66 0.57 0.78 0.69 0.64 0.55 0.65 0.55 0.59 0.53 0.67 0.61
Cxf 0.62 0.50 0.69 0.63 0.78 0.62 0.58 0.71 0.52 0.62 0.58 0.68 0.55
Flink 0.66 0.80 0.65 0.72 0.67 0.77 0.83 0.65 0.59 0.79 0.61 0.73 0.70
Groovy 0.60 0.63 0.53 0.66 0.63 0.64 0.97 0.58 0.51 0.65 0.60 0.57 0.63
Hadoop 0.60 0.63 0.53 0.66 0.63 0.64 0.97 0.58 0.51 0.65 0.60 0.57 0.63
Hive 0.61 0.62 0.67 0.62 0.62 0.64 0.81 0.61 0.67 0.61 0.64 0.67 0.56
Kafka 0.64 0.77 0.55 0.71 0.67 0.73 0.64 0.61 0.59 0.82 0.53 0.64 0.67
Karaf 0.54 0.59 0.54 0.59 0.53 0.57 0.49 0.63 0.54 0.58 0.82 0.60 0.65
Wicket 0.53 0.56 0.49 0.53 0.52 0.51 0.58 0.55 0.52 0.60 0.58 0.82 0.59
Zookeeper 0.51 0.58 0.57 0.57 0.58 0.56 0.73 0.71 0.53 0.52 0.61 0.55 0.83

The comparison of area under (a ROC) curve for the studied sys-
tems. The cross-system AUC is lower than within-system AUC. We fur-
ther investigate whether different systems share a similar relationship between
test smell and defect proneness (i.e., whether the models are applicable cross-
systems). Table 7 shows the results of our cross-system AUC using combined
(i.e., product and process) test smell features. In general, we find that the
results of cross-system AUC are lower than the within-system AUC. In par-
ticular, some models trained on one system (e.g., Accumulo) perform worse
when applied on some systems (e.g., AUC is 0.53 when the model is applied on

28 Dong Jae Kim et al.

Camel) but are relatively better when applied on other systems (e.g., AUC is
0.67 when applied on Cassandra and Kafka). Our results show that while dif-
ferent systems have different development characteristics, some systems may
have a more similar relationship between test smells and defect-proneness. Fu-
ture studies are needed to further study effect of test smells across systems
from different domains.

The studied test smell metrics increase the AUC of the model by an
average of 8.25% over the BASE model. The test smell product met-
rics such as Conditional Test Logic, Constructor Initialization, Exception
Catch/Throw, Mystery Guest, Resource Optimism, Assertion Roulette, Ea-
ger Test, and Lazy Test may have a higher correlation with the defect-
proneness, while process metrics have little or no improvements to the
model fitness. Contrarily, the effect size of test smell metrics have minimal
effect on defect-proneness, and different test smell has a different effect on
the defect-proneness of source code files across the studied systems.

Title Suppressed Due to Excessive Length 29

4 Implications of our Findings

Table 8 summarizes the results and implications for each research question.

Table 8: Summary of our findings and their implications.

Findings about how test smells evolve overtime Implications

F.1 Although the total number of test smell increases
over time, after normalizing by the total number of
lines of test code, the test smell density remains rela-
tively stable in most of the 12 studied systems.

I.1 As software system evolves, test smell will likely co-evolve with
amount of added test code. However, our results suggest that de-
velopers may allocate some resources in maintaining test code that
results in removal of test smells.

Findings about test smell awareness refactor-
ings

Implications

F.1 Sleepy Test & Exception Catch/Throw are the
two test smells that developers directly address..

I.1 Our results may help future research and tool builders to focus
on these two test smells for a better recommendation support on
addressing test smells.

F.2 Developers sometimes refactor test smell to re-
move verbose statements. In particular, developers
may use better assertion style to remove test smells.

I.2 There are numerous testing frameworks that offer distinct as-
sertion syntax. However, due to lack of experience and knowledge,
developers may sometimes resort to verbose assertions. Future re-
search should investigate refactoring recommendation using better
assertion statements.

Findings about test smell unawareness refac-
torings

Implications

F.1 58 out of 292 (20%) commits relocated test smells
to another test case after some refactoring and main-
tenance activities. In such cases, developers pay atten-
tion to test code reusability and duplication instead of
addressing test smells. Subsequently, we find that in
some cases relocation can diffuse the impact of test
smells (e.g., relocated to a utility file).

I.1 Although the maintenance test code has become a prominent
task in recent years, for the most part, test smell is not the reason
for refactoring, and developers may not pay attention to addressing
test smells.

F.2 70 out of 292 (24%) commits remove test smells
while working on other maintenance tasks.

I.2 Test smells are inherent problems, which may hinder test design
and comprehension. However, our result shows that developers may
not be aware of the test smells. Many test smells are indirectly re-
moved when developers deal with bug fixing or feature enhancement.

Findings about other maintenance activities
that removed test smells

Implications

F.1 Most test smells are removed due to test code
deletion (33%). We find that as test code evolves, there
may be substantial instances of ad-hoc manual test
code deletions caused by redundant or obsolete test
code, which remove test smells as a side-effect.

I.1 Our result suggests that developers often manually maintain
test code by deleting duplicate or obsolete test code, which may
be time consuming. Future studies should support the detection of
refactoring opportunities or even conduct automated refactoring to
reduce maintainability efforts.

F.2 Developer tends to disable (i.e., commenting out
or ignoring) test case (2%) to make a test pass.

I.2 Future studies should further investigate the causes for disabling
test cases, and whether disabled test cases become technical debts
in the systems (e.g., forget to re-enable) (Pham and Yang, 2020;
Sṕınola et al., 2019).

Findings about relationship between test smell
and software quality

Implications

F.1 Test smell metrics complement traditional metrics
in explaining post-release defects, even though the ad-
dition is small (an average of 5.8% increase in AUC).

I.1 Our result suggests that test smell metrics have a certain cor-
relation with post-release defect, even though the correlation (i.e.,
improvement in model fitness) is not large.

F.2 The test smells such as Conditional Test Logic,
Constructor Initialization, Exception Catch/Throw,
Mystery Guest, Resource Optimism, Assertion
Roulette, Eager Test, and Lazy Test have a higher
defect explanatory power in the model.

I.2 Future studies on test smells may focus more on the above-
mentioned test smell due to their higher explainability in post-release
defect in the model.

F.3 The effect sizes of most test smell metrics on
defect-proneness are small. Among all test smells,
Conditional Test Logic and Exception Catch/Throw
have the largest effect on a post-release defect.

I.3 Future studies should further investigate the effect of Conditional
Test Logic and Exception Catch/Throw on software quality and help
practitioners prioritize their effort on addressing test smells.

30 Dong Jae Kim et al.

5 Threats to Validity

External Validity: The studied systems are all open source implemented
in Java, so the results may not be generalizable to all systems. To minimize
the threat, we study systems that are large in scale, cover various domains,
frequently used in commercial settings, and diversify the pool of test code un-
der analysis based on the expertise of the developer. Even though our results
are consistent among the studied systems, other developers/systems might ex-
hibit a different awareness level about the test smells. Therefore, future studies
must evaluate the results on additional systems and systems implemented in
different programming languages.

Internal Validity: There may be confounding metrics that may affect the
result of our logistic regression model. To mitigate this, we include baseline
metrics, such as lines of test code, code churn, and two coupling metrics (i.e.,
source code to test code dependencies and test code to test code dependencies)
in the model. Moreover, our model does not indicate a causal relationship, but
rather that there is a possibility of a relationship that may be further investi-
gated in future research. Furthermore, our study aims to understand the rela-
tionship between test smell metrics to software post-release defects by studying
the effect of test smells on post-release defects. Therefore, we build a logistic
regression model to study the relationship between test smell and post-release
defects, because logistic regression models provide better interpretability com-
pared to more advanced machine learning model. Future studies investigating
the effect of test smell on prediction performance should study just-in-time
prediction and cross-system prediction.

Construct Validity: There may be false positives in the tool, tsDetector, that
we used for identifying test smells. However, we found that false positive rate to
be low in our manual study. We found 12 false positives (4% false positive rate),
which is consistent with the number reported in the prior study (Peruma et al.,
2019). Moreover, there may be biases in our manual study on characterizing
the commits that remove test smells. To minimize the biases, two authors
independently inspect every commit and then merge the results. Furthermore,
we examine all available software artifacts, such as commit messages, code
changes, and bug reports. As for the reasons for removing test smells, many
non-technical factors may play a role, such as a lack of knowledge and lack of
time. However, in the bug report we analyzed, we did not find that developers
mention such non-technical aspects that challenge test code’s maintainability.
Future studies should further dedicate studies on such non-technical factors. A
recent paper Spadini et al. (2020) reported a severity threshold for tsDetector
to make a recommendation when test smells are prevalent. Such results have
a low impact on our results because we study test smells removal at a more
general level, not only when there are too many tests smells. Finally, in our
time series plot (RQ1), we plot the averaged test smell metrics of all systems.
To ensure that one system does not overestimate the average, leading to false
trends, we verified that the individual systems’ time series has the same trend
as the average.

Title Suppressed Due to Excessive Length 31

6 Related Work

There is ongoing research into the discovery, classification of test smells, and
their impact on software quality and maintainability (Athanasiou et al., 2014;
Bavota et al., 2015; Garousi and Küçük, 2018; Junior et al., 2020a; Levin and
Yehudai, 2017; Spadini et al., 2018; Tufano et al., 2016). In this section, we
describe related prior research in two areas: (1) awareness and maintenance of
test smells, and (2) software defect modelling.

Awareness and Maintenance of Test Smells. Akiyama (1971) discuss
the importance of having a well-designed test code. He argued that well-
designed test cases are easier to comprehend and maintain. He proposed that
refactoring production code is different from refactoring test code and sug-
gested different types of test smell refactoring operations, such as removing
dependencies and making resources unique. Motivated by this work, Deursen
et al. (2001) introduced 11 catalogs of test smells, which are patterns of poor
design decisions associated with test code. Since the proposal of test smells,
a study by Tufano et al. (2016) surveyed developers’ awareness of test smells.
The result shows that most developers do not recognize design problems in
test code and do not perceive test smells as actual problems. Furthermore, to
understand what kind of tool support is required, the study also conducted
quantitative research to observe when test smells are introduced and fixed. The
result shows that test smells have long survivability (i.e., 100 days) and are
mostly introduced the first time the test code is written. Similar to our work,
Tufano et al. (2017) studied the reasons behind code smells in production code.
They also find that code smell is no removed as a by-product of code deletion
or comment. Another survey by Junior et al. (2020a) suggests that developers’
professional experience cannot be considered a root cause for the insertion of
test smells in test code. Similarly, we believe that not all test smells may result
in problems, and perhaps there may be specific types of test smells that may
require more attention as a result of other factors. We also study the reasons
that prompt developers to remove test smells. Peruma et al. (2019) propose a
new catalog of test smells and a detection tool, elucidate a lack of investiga-
tion of test smells in Android applications. They concluded that test smells are
widely distributed and are similar in both mobile and non-mobile application
domains. Subsequently, they surveyed developers’ awareness of these detected
test smells. They found that developers are often aware of the negative con-
sequences of test smells in the software system. Similarly, our study uses the
tool devised by Peruma et al. (2019) to mine test smell removing commits
from the 12 large-scale software systems. In particular, our study attempts
to uncover different types of test smells that developers may pay attention to
the most in software development and what may be the reasons for removing
test smells. We uncover these by studying the code review artifacts (i.e., bug
report, commit message, pull request) and code context (manual code analy-
sis). Consequently, we believe this is a necessary step towards understanding
the impact of test smells and building a better test smell refactoring tool that
reflects developers’ needs. Spadini et al. (2020) uses tsDetector to propose a

32 Dong Jae Kim et al.

severity threshold for detection rules. The new thresholds have been deter-
mined after investigating developers’ perception of test smell severity. Unlike
their work, we study the general trend on how developers remove test smells.
Using such a threshold may under-estimate situations where developers may
remove test smells. Due to the increasing importance of test code mainte-
nance, Garousi and Küçük (2018) conducted a large-scale systematic study to
summarize a catalog of 196 test smell instances. However, most of the studied
test smells are related to general code smells (e.g., long parameter list, god
class, no comments, and bad naming), code smells specific to TCN language,
and code smells from grey literature (i.e., blog posts) or difficult to general-
ize (e.g., complicated setup, long-running test, long test file). Different from
their research, we focus on 18 other test smells because they are related to
unit testing practices in Java (Peruma et al., 2020) and advocated in xUnit
guidelines Meszaros (2007). These 18 test smells have also been highlighted
as problematic and extensively studied in prior research in test code main-
tainability and developers’ awareness about test smells Bavota et al. (2012);
Junior et al. (2020a).

Yu et al. (2019) is the first work to investigate the process involved in
comprehending test code. They surveyed developers’ time spent reading and
extending the test code at various test case design steps. Although their re-
search place a necessary step towards understanding factors that influence test
code comprehension, it is difficult to gain actionable insights for tool support.
The study does not provide empirical evidence on the complex characteristics
of test code evolution. Motivated by limitations of current repair techniques
to design test cases accurately, the study by Pinto et al. (2012) analyzes test
code evolution in terms of their modification, addition and deletion to eluci-
date complicated evolution of test cases to suggest better repair techniques in
the future. Similarly, we attempt to fill the missing empirical evidence in how
developers may remove test smells in practice. We also analyze the relationship
between test smell metrics and software quality. Our modeling analysis identi-
fies types of test smells that have a higher relationship with defect-proneness.

Software Defect Modelling. Software defect modeling has been proposed to
ensure high quality by understanding the relationship between various software
metrics (e.g., lines of code, McCabe’s Cyclomatic complexity) and the software
defects (Moser et al., 2008; Munson and Khoshgoftaar, 1992). So far, there are
two main approaches in software defect modeling. The first is to use quality
metrics to predict where the defect may occur, allocating maintenance efforts
in the specific code artifacts (Moser et al., 2008; Piotrowski and Madeyski,
2020). Another approach is by studying the relationship between the studied
metrics and the probability of a post-release defect (de Pádua and Shang,
2018; Shang et al., 2015; Shihab et al., 2010). The two share a different defect
labeling process in the model. SZZ is used in the formal approach to predict
defect introducing code changes (Kamei et al., 2016; Rodŕıguez-Pérez et al.,
2020). Since defect modeling at the commit-level may miss relevant bugs (i.e.,
bugs introduced in one version but not found until much later), we use a more

Title Suppressed Due to Excessive Length 33

interpretable process like the post-release defect to label our defect data. The
post-release defects provide a different indication of the software quality.

Motivated by their work, numerous researchers have begun to use anti-
pattern or code smells as a quality metric for defect modeling. For instance,
the work by de Pádua and Shang (2018) uses exception handling anti-pattern
to characterize post-release defect. Palomba et al. (2014) found that there
is a correlation between code smell removal and defect-proneness. Since test
smell is becoming an important and ongoing research interest, researchers have
also started to investigate test smell metrics in the defect modelling (Qusef
et al., 2019; Spadini et al., 2018). In particular, prior researches study the
relationship by looking only at the test smell product metric, which is the
presence of test smells in software systems (Spadini et al., 2018). However, this
may not be an accurate assessment as software evolution involve complex code
changes. To fill this gap, Palomba et al. (2019) proposed a defect prediction
model based on both process and product metrics. They claimed that their
combined metrics improve the performance of prediction accuracy. Similarly,
we study test process metrics to gain further insights into how the test smell
addition and removal in software evolution may provide additional explanatory
power to the probability of a post-release defect. We also control for various
baseline metrics (e.g., traditional process, product, and coupling metrics) in
our model. We found that test smell process metrics provide less explanatory
power than test smell product metrics. We also found that some test smells,
such as Conditional Test Logic and Exception Catch/Throw, have a larger
correlation with software defect-proneness.

7 Conclusion

First and foremost, the primary value of our research work comes from recog-
nizing the importance of understanding why developers remove test smells and
the mechanisms in which they are addressed. We believe this is a necessary
corequisite to validate current perception of test smells towards developing
a more useful refactoring recommendation tool. Without such knowledge, fu-
ture studies may progress to propose new test smells and detection tools with
minor applicability in the wild and may even hamper software maintenance
effort. To that end, we attempt to tackle this problem in three folds. First, we
find that developers may allocate resources in the maintenance of test code.
The test smell density decreases over time, even though the total number of
test smell increases in the software systems. Second, we find that developers
are more likely to address a subset of test smells (i.e., Exception Catch/Throw
and Sleepy Test) and the rest were usually removed indirectly as a side-effect
of accomplishing other non-trivial maintenance tasks related to fixing bugs
or change in feature requirements. Similarly, we identify other code changes
besides refactoring that relocate, diffuse, delete, disable and revert test code
that caused the removal of test smells. Finally, we apply regression models to
understand the relationship between test smell metrics and post-release defect.

34 Dong Jae Kim et al.

After controlling for baseline metrics (i.e., LOC, code churn, pre-release defect,
and coupling in test code), we find that test smell metrics provide additional
defect explanatory power, although the increase is small. Our model also finds
that test smells such as Exception Catch/Throw and Conditional Test Logic
have a larger effect on post-release defect. In summary, our study highlights
that developers may allocate resources on maintaining test code, but they of-
ten do not address test smells. However, we find that some test smells do have
some relationship between post-release defect. Future studies are needed to
better assist developers with prioritizing the resources to address test smells
and refactoring test code.

References

Akiyama, F. (1971). An example of software system debugging. In C. V.
Freiman, J. E. Griffith, and J. L. Rosenfeld, editors, Information Processing,
Proceedings of IFIP, 1971 , pages 353–359. North-Holland.

AlDanial (2019). Count lines of code. https://github.com/AlDanial/cloc.
Ali, N. B., Engström, E., Taromirad, M., Mousavi, M. R., Minhas, N. M.,

Helgesson, D., Kunze, S., and Varshosaz, M. (2019). On the search for
industry-relevant regression testing research. Empirical Software Engineer-
ing , 24(4), 2020–2055.

Apache (2020). Apache jenkins. https://builds.apache.org/. Last accessed
April 3 2020.

Athanasiou, D., Nugroho, A., Visser, J., and Zaidman, A. (2014). Test code
quality and its relation to issue handling performance. IEEE Transactions
on Software Engineering , 40(11), 1100–1125.

Bavota, G., Qusef, A., Oliveto, R., Lucia, A. D., and Binkley, D. W. (2012). An
empirical analysis of the distribution of unit test smells and their impact on
software maintenance. In 28th IEEE International Conference on Software
Maintenance, ICSM , pages 56–65. IEEE Computer Society.

Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., and Binkley, D. (2012). An
empirical analysis of the distribution of unit test smells and their impact
on software maintenance. In 2012 28th IEEE International Conference on
Software Maintenance (ICSM), pages 56–65.

Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., and Binkley, D. (2015). Are
test smells really harmful? an empirical study. Empirical Software Engi-
neering , 20(4), 1052–1094.

Bird, C., Nagappan, N., Murphy, B., Gall, H., and Devanbu, P. (2011). Don’t
touch my code!: Examining the effects of ownership on software quality.
In Proceedings of the 19th ACM SIGSOFT symposium and the 13th Eu-
ropean conference on Foundations of software engineering , SIGSOFT/FSE
’11, pages 4–14.

Biyani, S. and Santhanam, P. (1998). Exploring defect data from development
and customer usage on software modules over multiple releases. In Ninth

https://github.com/AlDanial/cloc
https://builds.apache.org/

Title Suppressed Due to Excessive Length 35

International Symposium on Software Reliability Engineering, ISSRE , pages
316–320. IEEE Computer Society.

Bleser, J. D., Nucci, D. D., and Roover, C. D. (2019). Assessing diffusion
and perception of test smells in scala projects. In M. D. Storey, B. Adams,
and S. Haiduc, editors, Proceedings of the 16th International Conference on
Mining Software Repositories, MSR, pages 457–467. IEEE / ACM.

Chen, T., Thomas, S. W., Hemmati, H., Nagappan, M., and Hassan, A. E.
(2017). An empirical study on the effect of testing on code quality using topic
models: A case study on software development systems. IEEE Transactions
on Reliability , 66(3), 806–824.

Chen, T., Shang, W., Nagappan, M., Hassan, A. E., and Thomas, S. W. (2017).
Topic-based software defect explanation. J. Syst. Softw., 129, 79–106.

Chen, T.-H., Thomas, S. W., Nagappan, M., and Hassan, A. (2012). Explain-
ing software defects using topic models. In Proceedings of the 9th Working
Conference on Mining Software Repositories, MSR ’12.

Child, M., Rosner, P., and Counsell, S. (2019). A comparison and evaluation
of variants in the coupling between objects metric. J. Syst. Softw., 151,
120–132.

D’Ambros, M., Lanza, M., and Robbes, R. (2010). An extensive comparison of
bug prediction approaches. In J. Whitehead and T. Zimmermann, editors,
Proceedings of the 7th International Working Conference on Mining Soft-
ware Repositories, MSR 2010 (Co-located with ICSE), Cape Town, South
Africa, May 2-3, 2010, Proceedings, pages 31–41. IEEE Computer Society.

de Pádua, G. B. and Shang, W. (2018). Studying the relationship between
exception handling practices and post-release defects. In Proceedings of
the 15th International Conference on Mining Software Repositories, MSR,
pages 564–575.

Deursen, A., Moonen, L. M., Bergh, A., and Kok, G. (2001). Refactoring test
code. Technical report, Amsterdam, The Netherlands, The Netherlands.

Eck, M., Palomba, F., Castelluccio, M., and Bacchelli, A. (2019). Understand-
ing flaky tests: the developer’s perspective. In M. Dumas, D. Pfahl, S. Apel,
and A. Russo, editors, Proceedings of the ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE , pages 830–840. ACM.

Garousi, V. and Küçük, B. (2018). Smells in software test code: A survey
of knowledge in industry and academia. Journal of Systems and Software,
138, 52–81.

Harrell Jr, F. E. (2015). Regression modeling strategies: with applications
to linear models, logistic and ordinal regression, and survival analysis.
Springer.

Jiarpakdee, J., Tantithamthavorn, C., and Hassan, A. E. (2018). The impact
of correlated metrics on defect models. CoRR, abs/1801.10271.

Junior, N. S., Soares, L. R., Martins, L. A., and Machado, I. (2020a). A survey
on test practitioners’ awareness of test smells. CoRR, abs/2003.05613.

Junior, N. S., Soares, L. R., Martins, L. A., and Machado, I. (2020b). A survey
on test practitioners’ awareness of test smells. CoRR, abs/2003.05613.

36 Dong Jae Kim et al.

Kamei, Y., Fukushima, T., McIntosh, S., Yamashita, K., Ubayashi, N., and
Hassan, A. E. (2016). Studying just-in-time defect prediction using cross-
project models. Empir. Softw. Eng., 21(5), 2072–2106.

Knuth, D. E. (1981). Seminumerical Algorithms, volume 2 of The Art of
Computer Programming . Addison-Wesley, Reading, MA, 2nd edition.

Kuhn, M. and Johnson, K. (2013). Applied predictive modeling , volume 26.
Springer.

Lam, W., Godefroid, P., Nath, S., Santhiar, A., and Thummalapenta, S.
(2019). Root causing flaky tests in a large-scale industrial setting. In
D. Zhang and A. Møller, editors, Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA, pages
101–111. ACM.

Levin, S. and Yehudai, A. (2017). The co-evolution of test maintenance and
code maintenance through the lens of fine-grained semantic changes. In 2017
IEEE International Conference on Software Maintenance and Evolution,
ICSME , pages 35–46. IEEE Computer Society.

Luo, Q., Hariri, F., Eloussi, L., and Marinov, D. (2014). An empirical analysis
of flaky tests. In S. Cheung, A. Orso, and M. D. Storey, editors, Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, (FSE-22), pages 643–653. ACM.

Meszaros, G. (2007). xUnit test patterns: Refactoring test code. Pearson Ed-
ucation.

Moser, R., Pedrycz, W., and Succi, G. (2008). A comparative analysis of the
efficiency of change metrics and static code attributes for defect prediction.
In W. Schäfer, M. B. Dwyer, and V. Gruhn, editors, 30th International
Conference on Software Engineering (ICSE),, pages 181–190. ACM.

Munson, J. C. and Khoshgoftaar, T. M. (1992). The detection of fault-prone
programs. IEEE Trans. Software Eng., 18(5), 423–433.

Nagappan, N. and Ball, T. (2005). Use of relative code churn measures to
predict system defect density. In Proceedings of the 27th international con-
ference on Software engineering , pages 284–292.

Nagappan, N., Ball, T., and Zeller, A. (2006). Mining metrics to predict
component failures. In L. J. Osterweil, H. D. Rombach, and M. L. Soffa,
editors, 28th International Conference on Software Engineering (ICSE),,
pages 452–461. ACM.

Palomba, F., Bavota, G., Penta, M. D., Oliveto, R., and Lucia, A. D. (2014).
Do they really smell bad? A study on developers’ perception of bad code
smells. In 30th IEEE International Conference on Software Maintenance
and Evolution, pages 101–110. IEEE Computer Society.

Palomba, F., Nucci, D. D., Panichella, A., Oliveto, R., and Lucia, A. D. (2016).
On the diffusion of test smells in automatically generated test code: an
empirical study. In Proceedings of the 9th International Workshop on Search-
Based Software Testing, SBST@ICSE , pages 5–14. ACM.

Palomba, F., Zanoni, M., Fontana, F. A., Lucia, A. D., and Oliveto, R. (2019).
Toward a smell-aware bug prediction model. IEEE Trans. Software Eng.,
45(2), 194–218.

Title Suppressed Due to Excessive Length 37

Peruma, A., Almalki, K., Newman, C. D., Mkaouer, M. W., Ouni, A., and
Palomba, F. (2019). On the distribution of test smells in open source an-
droid applications: An exploratory study. In Proceedings of the 29th Annual
International Conference on Computer Science and Software Engineering ,
CASCON ’19, pages 193–202.

Peruma, A., Almalki, K., Newman, C. D., Mkaouer, M. W., Ouni, A., and
Palomba, F. (2020). tsdetect: An open source test smells detection tool. In
Proceedings of the 2020 28th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engi-
neering , ESEC/FSE 2020, New York, NY, USA. Association for Computing
Machinery.

Pham, T. M.-T. and Yang, J. (2020). The secret life of commented-out source
code. In 28th IEEE/ACM International Conference on Program Compre-
hension, ICSE .

Pinto, L. S., Sinha, S., and Orso, A. (2012). Understanding myths and real-
ities of test-suite evolution. In W. Tracz, M. P. Robillard, and T. Bultan,
editors, 20th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-20), page 33. ACM.

Piotrowski, P. and Madeyski, L. (2020). Software defect prediction using bad
code smells: A systematic literature review. In Data-Centric Business and
Applications, pages 77–99.

Qusef, A., Elish, M. O., and Binkley, D. W. (2019). An exploratory study
of the relationship between software test smells and fault-proneness. IEEE
Access, 7, 139526–139536.

Rahman, F. and Devanbu, P. T. (2011). Ownership, experience and defects: a
fine-grained study of authorship. In R. N. Taylor, H. C. Gall, and N. Medvi-
dovic, editors, Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011 ,
pages 491–500. ACM.

Rodŕıguez-Pérez, G., Robles, G., Serebrenik, A., Zaidman, A., Germán, D. M.,
and González-Barahona, J. M. (2020). How bugs are born: a model to
identify how bugs are introduced in software components. Empir. Softw.
Eng., 25(2), 1294–1340.

Shamshiri, S., Rojas, J. M., Galeotti, J. P., Walkinshaw, N., and Fraser, G.
(2018). How do automatically generated unit tests influence software main-
tenance? In 11th IEEE International Conference on Software Testing, Ver-
ification and Validation, ICST , pages 250–261. IEEE Computer Society.

Shang, W., Nagappan, M., and Hassan, A. E. (2015). Studying the relationship
between logging characteristics and the code quality of platform software.
Empirical Software Engineering , 20(1), 1–27.

Shi, A., Bell, J., and Marinov, D. (2019). Mitigating the effects of flaky tests
on mutation testing. In D. Zhang and A. Møller, editors, Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA, pages 112–122. ACM.

Shihab, E., Jiang, Z. M., Ibrahim, W. M., Adams, B., and Hassan, A. E.
(2010). Understanding the impact of code and process metrics on post-

38 Dong Jae Kim et al.

release defects: A case study on the eclipse project. In Proceedings of the
2010 ACM-IEEE International Symposium on Empirical Software Engineer-
ing and Measurement , page 4. ACM.

Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., and Bacchelli, A. (2018).
On the relation of test smells to software code quality. In 2018 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME),
pages 1–12.

Spadini, D., Schvarcbacher, M., Oprescu, A., Bruntink, M., and Bacchelli,
A. (2020). Investigating severity thresholds for test smells. In S. Kim,
G. Gousios, S. Nadi, and J. Hejderup, editors, MSR ’20: 17th International
Conference on Mining Software Repositories, Seoul, Republic of Korea, 29-
30 June, 2020 , pages 311–321. ACM.

Sṕınola, R. O., Zazworka, N., Vetro, A., Shull, F., and Seaman, C. B. (2019).
Understanding automated and human-based technical debt identification
approaches-a two-phase study. J. Braz. Comp. Soc., 25(1), 5:1–5:21.

Tsantalis, N., Mansouri, M., Eshkevari, L. M., Mazinanian, D., and Dig, D.
(2018). Accurate and efficient refactoring detection in commit history. In
Proceedings of the 40th International Conference on Software Engineering ,
ICSE ’18, pages 483–494, New York, NY, USA. ACM.

Tufano, M., Palomba, F., Bavota, G., Penta, M. D., Oliveto, R., Lucia, A. D.,
and Poshyvanyk, D. (2016). An empirical investigation into the nature of
test smells. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering , pages 4–15.

Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Penta, M. D., Lucia, A. D.,
and Poshyvanyk, D. (2017). When and why your code starts to smell bad
(and whether the smells go away). IEEE Trans. Software Eng., 43(11),
1063–1088.

Van Deursen, A., Moonen, L., Van Den Bergh, A., and Kok, G. (2001). Refac-
toring test code. In Proceedings of the 2nd international conference on ex-
treme programming and flexible processes in software engineering (XP2001),
pages 92–95.

Wang, S., Chen, T.-H., and Hassan, A. E. (2018). Understanding the factors
for fast answers in technical q&a websites. Empirical Software Engineering ,
23(3), 1552–1593.

Yu, C. S., Treude, C., and Aniche, M. F. (2019). Comprehending test code:
An empirical study. CoRR, abs/1907.13365.

Zaidman, A., Rompaey, B. V., Demeyer, S., and v. Deursen, A. (2008). Min-
ing software repositories to study co-evolution of production test code. In
2008 1st International Conference on Software Testing, Verification, and
Validation, pages 220–229.

Zeller, A. (2009). Why Programs Fail - A Guide to Systematic Debugging, 2nd
Edition. Academic Press.

Zhao, X., Liang, J., and Dang, C. (2019). A stratified sampling based clustering
algorithm for large-scale data. Knowl. Based Syst., 163, 416–428.

Zimmermann, T., Premraj, R., and Zeller, A. (2007). Predicting defects for
eclipse. In Proceedings of the Third International Workshop on Predictor

Title Suppressed Due to Excessive Length 39

Models in Software Engineering , PROMISE 07, page 9.

40 Dong Jae Kim et al.

Title Suppressed Due to Excessive Length 41

8 Appendix

Table 9: The statistics of the regression models showing additive defect ex-
plainability of PD(TEST PRODUCT) + PR(TEST PROCESS) metrics over
the BASE(LOC+CHURNS+PRE+COUPLING). Tot. χ2 shows the total ex-
planatory power of the studied model. We also show the proportion of χ2

contributed by each metric.

project modelType Metrics χ2 Tot. χ2 AUC (%)

Camel BASE LOC 76.33% 276.76 0.74
pre bug 4.76%
codeChurn 7.79%
ts coupling 11.12%

BASE+PD ts coupling 34.6% 88.98 0.75 (1.3%)
Assertion.Roulette 15.11%
Conditional.Test.Logic 6.02%
General.Fixture 8.2%
Mystery.Guest 14.6%
Redundant.Assertion 8.01%
Duplicate.Assert 7.82%
Resource.Optimism 5.64%

BASE+PD+PR ts coupling 31.38% 104.29 0.75 (1.6%)
Assertion.Roulette 12.57%
Conditional.Test.Logic 5.59%
General.Fixture 7.23%
Mystery.Guest 12.42%
Redundant.Assertion 5.82%
Duplicate.Assert 5.81%
Resource.Optimism 4.86%
Print.Statement.Added 4.47%
Print.Statement.Removed 4.86%
Eager.Test.Removed 4.99%

Cassandra BASE LOC 43.38% 228.50 0.75
pre bug 33.02%
codeChurn 6.37%
fileChurn 8.95%
ts coupling 5.72%
tt coupling 2.57%

BASE+PD ts coupling 69.01% 18.93 0.76 (1.1%)
tt coupling 30.99%

BASE+PD+PR ts coupling 30.73% 42.50 0.78 (3.3%)
tt coupling 13.8%
IgnoredTest.Added 11.15%
Conditional.Test.Logic.Removed 33.06%
Exception.Catching.Throwing.Removed 11.25%

Flink BASE LOC 46.04% 1396.14 0.76
pre bug 35.08%
codeChurn 6.61%
deletedLine 0.29%
fileChurn 10.41%
ts coupling 1.56%

BASE+PD ts coupling 19.61% 111.28 0.77 (1.0%)
Conditional.Test.Logic 9.81%
Exception.Catching.Throwing 4.96%
General.Fixture 12.99%
Mystery.Guest 22.05%
Lazy.Test 3.62%
Unknown.Test 20.69%
Magic.Number.Test 6.27%

BASE+PD+PR ts coupling 16.27% 134.14 0.77 (1.5%)
Conditional.Test.Logic 8.14%
Exception.Catching.Throwing 4.12%
General.Fixture 10.77%
Mystery.Guest 18.29%
Lazy.Test 3.0%
Unknown.Test 17.16%
Magic.Number.Test 5.2%
EmptyTest.Added 4.28%
Mystery.Guest.Added 3.67%
Duplicate.Assert.Removed 3.08%
Magic.Number.Test.Removed 6.01%

42 Dong Jae Kim et al.

Table 10: The statistics of the regression models showing additive defect ex-
plainability of PD(TEST PRODUCT) + PR(TEST PROCESS) metrics over
the BASE(LOC+CHURNS+PRE+COUPLING). Tot. χ2 shows the total ex-
planatory power of the studied model. We also show the proportion of χ2

contributed by each metric.

project modelType Metrics χ2 Tot. χ2 AUC (%)

Accumulo BASE LOC 33.05% 188.85 0.68
pre bug 20.8%
deletedLine 21.54%
fileChurn 8.52%
ts coupling 13.57%
tt coupling 2.52%

BASE+PD ts coupling 40.5% 63.25 0.71 (3.9%)
tt coupling 7.52%
Conditional.Test.Logic 6.11%
Constructor.Initialization 16.76%
Redundant.Assertion 6.75%
Eager.Test 6.17%
Duplicate.Assert 7.07%

BASE+PD+PR ts coupling 31.71% 80.79 0.73 (6.4%)
tt coupling 5.89%
Conditional.Test.Logic 4.78%
Constructor.Initialization 13.12%
Redundant.Assertion 5.28%
Eager.Test 4.83%
Duplicate.Assert 5.54%
Duplicate.Assert.Added 4.95%
Unknown.Test.Added 10.78%
Eager.Test.Removed 5.98%

Bookkeeper BASE LOC 56.96% 177.81 0.8
pre bug 5.12%
codeChurn 22.63%
fileChurn 4.8%
ts coupling 10.48%

BASE+PD ts coupling 25.04% 74.40 0.84 (5.3%)
Assertion.Roulette 9.16%
Constructor.Initialization 20.52%
Lazy.Test 5.54%
Unknown.Test 23.86%
Resource.Optimism 15.89%

BASE+PD+PR ts coupling 16.61% 112.12 0.87 (8.8%)
Assertion.Roulette 6.08%
Constructor.Initialization 13.62%
Lazy.Test 3.67%
Unknown.Test 15.83%
Resource.Optimism 10.54%
Exception.Catching.Throwing.Added 4.4%
Lazy.Test.Added 3.75%
Unknown.Test.Added 7.85%
Magic.Number.Test.Added 5.82%
General.Fixture.Removed 3.85%
Sleepy.Test.Removed 7.97%

Title Suppressed Due to Excessive Length 43

Table 11: The statistics of the regression models showing additive defect ex-
plainability of PD(TEST PRODUCT) + PR(TEST PROCESS) metrics over
the BASE(LOC+CHURNS+PRE+COUPLING). Tot. χ2 shows the total ex-
planatory power of the studied model. We also show the proportion of χ2

contributed by each metric.

project modelType Metrics χ2 Tot χ2 AUC (%)

Hive BASE LOC 72.11% 500.82 0.64
pre bug 1.76%
codeChurn 6.96%
ts coupling 5.67%
tt coupling 13.5%

BASE+PD ts coupling 14.86% 191.14 0.66 (1.6%)
tt coupling 35.38%
Conditional.Test.Logic 2.58%
EmptyTest 3.62%
General.Fixture 9.66%
Lazy.Test 12.53%
Duplicate.Assert 4.16%
Unknown.Test 9.21%
IgnoredTest 2.09%
Resource.Optimism 5.91%

BASE+PD+PR ts coupling 10.94% 259.52 0.67 (3.3%)
tt coupling 26.05%
Conditional.Test.Logic 1.9%
EmptyTest 2.67%
General.Fixture 7.12%
Lazy.Test 9.23%
Duplicate.Assert 3.07%
Unknown.Test 6.78%
IgnoredTest 1.54%
Resource.Optimism 4.35%
Conditional.Test.Logic.Added 1.56%
Mystery.Guest.Added 3.57%
Duplicate.Assert.Added 5.94%
IgnoredTest.Added 1.84%
Redundant.Assertion.Removed 2.27%
Sensitive.Equality.Removed 2.84%
Eager.Test.Removed 2.08%
Duplicate.Assert.Removed 1.62%
Unknown.Test.Removed 3.15%
Magic.Number.Test.Removed 1.48%

Wicket BASE LOC 89.35% 103.02 0.78
fileChurn 6.56%
tt coupling 4.09%

BASE+PD tt coupling 14.08% 29.95 0.8 (2.9%)
Conditional.Test.Logic 48.84%
Eager.Test 23.95%
Unknown.Test 13.13%

BASE+PD+PR Conditional.Test.Logic 22.75% 48.82 0.82 (5.6%)
Eager.Test 12.09%
Unknown.Test 7.92%
Assertion.Roulette.Added 30.48%
Conditional.Test.Logic.Added 17.51%
Exception.Catching.Throwing.Added 9.26%

Zookeeper BASE LOC 50.8% 79.69 0.79
pre bug 36.45%
codeChurn 12.75%

BASE+PD Resource.Optimism 100.0% 4.90 0.8 (1.7%)
BASE+PD+PR Duplicate.Assert.Removed 25.57% 16.76 0.83 (5.4%)

Unknown.Test.Removed 74.43%

44 Dong Jae Kim et al.

Table 12: The statistics of the regression models showing additive defect ex-
plainability of PD(TEST PRODUCT) + PR(TEST PROCESS) metrics over
the BASE(LOC+CHURNS+PRE+COUPLING). Tot. χ2 shows the total ex-
planatory power of the studied model. We also show the proportion of χ2

contributed by each metric.

project modelType Metrics χ2 Tot χ2 AUC (%)

Kafka BASE LOC 58.84% 848.39 0.8
pre bug 28.83%
codeChurn 2.0%
fileChurn 4.69%
ts coupling 4.52%
tt coupling 1.13%

BASE+PD ts coupling 31.14% 123.05 0.81 (1.6%)
tt coupling 7.76%
Exception.Catching.Throwing 19.13%
Mystery.Guest 10.74%
Redundant.Assertion 4.45%
Lazy.Test 9.81%
Duplicate.Assert 6.8%
Unknown.Test 4.14%
Magic.Number.Test 6.02%

BASE+PD+PR ts coupling 28.13% 136.23 0.82 (2.6%)
tt coupling 7.01%
Exception.Catching.Throwing 17.28%
Mystery.Guest 9.7%
Redundant.Assertion 4.02%
Lazy.Test 8.86%
Duplicate.Assert 6.14%
Unknown.Test 3.74%
Magic.Number.Test 5.44%
Exception.Catching.Throwing.Added 3.57%
Exception.Catching.Throwing.Removed 2.82%
Print.Statement.Removed 3.28%

Karaf BASE LOC 59.15% 10.26 0.64
tt coupling 40.85%

BASE+PD tt coupling 9.8% 42.78 0.75 (14.4%)
General.Fixture 14.16%
Print.Statement 16.85%
Sleepy.Test 47.66%
Unknown.Test 11.53%

BASE+PD+PR tt coupling 6.16% 72.25 0.82 (28.4%)
General.Fixture 8.53%
Print.Statement 9.76%
Sleepy.Test 30.24%
Unknown.Test 6.33%
Eager.Test.Added 5.87%
IgnoredTest.Added 9.52%
Magic.Number.Test.Added 9.87%
General.Fixture.Removed 13.73%

Hadoop BASE LOC 100.0% 6.72 0.82
BASE+PD Duplicate.Assert 100.0% 7.21 0.96 (14.1%)
BASE+PD+PR Duplicate.Assert 50.29% 14.74 0.97 (17.7%)

Duplicate.Assert.Added 49.71%

Title Suppressed Due to Excessive Length 45

Table 13: The statistics of the regression models showing additive defect ex-
plainability of PD(TEST PRODUCT) + PR(TEST PROCESS) metrics over
the BASE(LOC+CHURNS+PRE+COUPLING). Tot. χ2 shows the total ex-
planatory power of the studied model. We also show the proportion of χ2

contributed by each metric.

project modelType Metrics χ2 Tot χ2 AUC (%)

Cxf BASE LOC 70.8% 217.57 0.74
pre bug 17.85%
deletedLine 3.51%
fileChurn 3.72%
ts coupling 1.84%
tt coupling 2.27%

BASE+PD ts coupling 9.09% 44.10 0.77 (3.4%)
tt coupling 11.19%
Assertion.Roulette 47.17%
Constructor.Initialization 12.22%
Exception.Catching.Throwing 20.34%

BASE+PD+PR ts coupling 5.97% 67.19 0.78 (5.0%)
tt coupling 7.34%
Assertion.Roulette 30.96%
Constructor.Initialization 8.02%
Exception.Catching.Throwing 13.35%
Sensitive.Equality.Added 10.22%
Exception.Catching.Throwing.Removed 8.44%
Eager.Test.Removed 9.34%
IgnoredTest.Removed 6.36%

Groovy BASE LOC 100.0% 6.72 0.82
BASE+PD Duplicate.Assert 100.0% 7.21 0.96 (14.1%)
BASE+PD+PR Duplicate.Assert 50.29% 14.74 0.97 (17.7%)

Duplicate.Assert.Added 49.71%

46 Dong Jae Kim et al.

Table 14: The effect size of the test smell metrics on post-release defects. Effect
is measured by setting the subject metric to 110 % and 150 % of it mean value,
while other metrics are kept at their mean values. Bolded numbers indicate a
positive increase in effect.

project Metric Group Individual Metric 110 % ↑ 150 % ↑

Accumulo TEST PRODUCT Conditional.Test.Logic 0.12 % 0.62 %
Constructor.Initialization -0.07 % -0.34 %
Redundant.Assertion -0.04 % -0.18 %
Eager.Test -0.4 % -1.97 %
Duplicate.Assert -0.18 % -0.91 %

TEST PROCESS Eager.Test.Removed -0.01 % -0.04 %
Duplicate.Assert.Added 0.01 % 0.03 %
Unknown.Test.Added -0.01 % -0.03 %

Hive TEST PRODUCT Conditional.Test.Logic 0.08 % 0.41 %
EmptyTest 0.01 % 0.03 %
General.Fixture 0.05 % 0.27 %
Lazy.Test -0.25 % -1.22 %
Duplicate.Assert 0.05 % 0.26 %
Unknown.Test 0.12 % 0.58 %
IgnoredTest 0.01 % 0.06 %
Resource.Optimism 0.07 % 0.33 %

TEST PROCESS Redundant.Assertion.Removed -0.01 % -0.01 %
Sensitive.Equality.Removed 0.01 % 0.04 %
Eager.Test.Removed 0.01 % 0.01 %
Duplicate.Assert.Removed 0.01 % 0.01 %
Unknown.Test.Removed 0.06 % 0.29 %
Magic.Number.Test.Removed -0.01 % -0.06 %
Conditional.Test.Logic.Added -0.01 % -0.01 %
Mystery.Guest.Added 0.01 % 0.03 %
Duplicate.Assert.Added 0.01 % 0.04 %
IgnoredTest.Added 0.01 % 0.03 %

Wicket TEST PRODUCT Conditional.Test.Logic 0.01 % 0.01 %
Eager.Test 0.01 % 0.03 %
Unknown.Test 0.01 % 0.01 %

TEST PROCESS Assertion.Roulette.Added -0.01 % -0.01 %
Conditional.Test.Logic.Added -0.01 % -0.01 %
Exception.Catching.Throwing.Added 0.01 % 0.01 %

Cassandra TEST PROCESS Conditional.Test.Logic.Removed -0.01 % -0.03 %
Exception.Catching.Throwing.Removed 0.01 % 0.07 %
IgnoredTest.Added -0.01 % -0.01 %

Bookkeeper TEST PRODUCT Assertion.Roulette -0.17 % -0.82 %
Constructor.Initialization 0.33 % 1.81 %
Lazy.Test -0.22 % -1.01 %
Unknown.Test -0.09 % -0.42 %
Resource.Optimism 0.07 % 0.36 %

TEST PROCESS General.Fixture.Removed -0.01 % -0.02 %
Sleepy.Test.Removed 0.01 % 0.02 %
Exception.Catching.Throwing.Added 0.01 % 0.01 %
Lazy.Test.Added -0.03 % -0.14 %
Unknown.Test.Added -0.03 % -0.17 %
Magic.Number.Test.Added -0.01 % -0.01 %

Camel TEST PRODUCT Assertion.Roulette 0.01 % 0.01 %
Conditional.Test.Logic -0.01 % -0.01 %
General.Fixture -0.01 % -0.01 %
Mystery.Guest 0.01 % 0.01 %
Redundant.Assertion 0.01 % 0.01 %
Duplicate.Assert 0.01 % 0.01 %
Resource.Optimism 0.01 % 0.01 %

TEST PROCESS Print.Statement.Removed 0.01 % 0.01 %
Eager.Test.Removed -0.01 % -0.01 %
Print.Statement.Added -0.01 % -0.01 %

Groovy TEST PRODUCT Duplicate.Assert -0.01 % -0.01 %
TEST PROCESS Duplicate.Assert.Added 0.01 % 0.01 %

Karaf TEST PRODUCT General.Fixture 0.01 % 0.01 %
Print.Statement 0.01 % 0.01 %
Sleepy.Test 0.01 % 0.01 %
Unknown.Test -0.01 % -0.02 %

TEST PROCESS General.Fixture.Removed -0.01 % -0.01 %
Eager.Test.Added 0.01 % 0.01 %
IgnoredTest.Added -0.01 % -0.01 %
Magic.Number.Test.Added 0.01 % 0.01 %

Hadoop TEST PRODUCT Duplicate.Assert -0.01 % -0.01 %
TEST PROCESS Duplicate.Assert.Added 0.01 % 0.01 %

Title Suppressed Due to Excessive Length 47

Table 15: The effect size of the test smell metrics on post-release defects. Effect
is measured by setting the subject metric to 110 % and 150 % of it mean value,
while other metrics are kept at their mean values. Bolded numbers indicate a
positive increase in effect.

project Metric Group Individual Metric 110 % ↑ 150 % ↑

Cxf TEST PRODUCT Assertion.Roulette 0.01 % 0.08 %
Constructor.Initialization -0.01 % -0.03 %
Exception.Catching.Throwing 0.02 % 0.11 %

TEST PROCESS Exception.Catching.Throwing.Removed 0.01 % 0.01 %
Eager.Test.Removed -0.01 % -0.02 %
IgnoredTest.Removed 0.01 % 0.01 %
Sensitive.Equality.Added -0.01 % -0.01 %

Flink TEST PRODUCT Conditional.Test.Logic 0.04 % 0.22 %
Exception.Catching.Throwing -0.12 % -0.57 %
General.Fixture 0.01 % 0.07 %
Mystery.Guest 0.02 % 0.11 %
Lazy.Test -0.07 % -0.34 %
Unknown.Test -0.06 % -0.31 %
Magic.Number.Test -0.05 % -0.27 %

TEST PROCESS Duplicate.Assert.Removed -0.01 % -0.02 %
Magic.Number.Test.Removed -0.01 % -0.01 %
EmptyTest.Added -0.01 % -0.02 %
Mystery.Guest.Added 0.01 % 0.01 %

Zookeeper TEST PROCESS Duplicate.Assert.Removed -0.01 % -0.01 %
Unknown.Test.Removed -0.01 % -0.02 %

Kafka TEST PRODUCT Exception.Catching.Throwing 0.36 % 1.81 %
Mystery.Guest 0.06 % 0.31 %
Redundant.Assertion -0.04 % -0.2 %
Lazy.Test -0.9 % -4.32 %
Duplicate.Assert 0.17 % 0.84 %
Unknown.Test -0.06 % -0.28 %
Magic.Number.Test 0.33 % 1.66 %

TEST PROCESS Exception.Catching.Throwing.Removed -0.01 % -0.05 %
Print.Statement.Removed -0.03 % -0.16 %
Exception.Catching.Throwing.Added 0.03 % 0.14 %

	Introduction
	Background
	Case Study Results
	Implications of our Findings
	Threats to Validity
	Related Work
	Conclusion
	Appendix

