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Abstract—In continuous testing, developers execute automated test cases once or even several times per day to ensure the quality of
the integrated code. Although continuous testing helps ensure the quality of the code and reduces maintenance effort, it also
significantly increases test execution overhead. In this paper, we empirically evaluate the effectiveness of test impact analysis from the
perspective of code dependencies in the continuous testing setting. We first applied test impact analysis to one year of software
development history in 11 large-scale open-source systems. We found that even though the number of changed files is small in daily
commits (median ranges from 3 to 28 files), around 50% or more of the test cases are still impacted and need to be executed.
Motivated by our finding, we further studied the code dependencies between source code files and test cases, and among test cases.
We found that 1) test cases often focus on testing the integrated behaviour of the systems and 15% of the test cases have
dependencies with more than 20 source code files; 2) 18% of the test cases have dependencies with other test cases, and test case
inheritance is the most common cause of test case dependencies; and 3) we documented four dependency-related test smells that we
uncovered in our manual study. Our study provides the first step towards studying and understanding the effectiveness of test impact
analysis in the continuous testing setting and provides insights on improving test design and execution.

Index Terms—empirical study, test smells, continuous testing, test impact analysis

1 INTRODUCTION

ONTINUOUS integration (CI) is widely used in modern
C software development. The CI practice integrates de-
velopers’ code changes to a central code repository once or
even several times per day. Such frequent code integration
reduces software maintenance overheads and allows devel-
opers to provide the latest working software to customers.

To ensure the quality of the integrated code, developers
need to run a set of test cases for each code integration (i.e.,
CI build) in a continuous fashion — called continuous testing.
However, running test cases is time-consuming and requires
a significant amount of computing resources. To reduce
testing overhead, prior studies have proposed techniques to
reduce the test cases that need to be executed [1, 2] 3,4} 5] 6].
In particular, Orso et al. [7] and Legunsen et al. [8] found
that, by analyzing the static class dependencies between
test cases and source code files, we can effectively identify
and only execute the test cases that are “impacted” by the
code changes (i.e., have dependencies with the changed
code) to reduce testing overhead. In this paper, we call such
techniques test impact analysis [9].

Although prior studies have shed light on the potential
of test impact analysis, its effectiveness is closely related to
the design of test cases; and in particular, code dependen-
cies. Due to the frequent code changes and increased system
complexity, the maintenance and quality of test cases may
degrade. There may be a certain degree of dependencies
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between test cases and source code files, or among test
cases. We define the degree of dependencies as the number
of dependencies between a test case and other source code
files, among test cases, or between a source code file and
other test cases. Unlike traditional software development
where test cases are executed once in a while, having a high
degree of code dependency may have a larger accumulated
testing overhead in CI due to frequent code integration and
testing. A high degree of dependencies (i.e., a test case has
dependencies with multiple source code files or other test
cases, or a source code file is tested by multiple test cases)
may reduce the effectiveness of test impact analysis and
increase the difficulty of test maintenance.

To better understand the effectiveness of test impact
analysis in CI settings and provide insights on improving
the modularity of test case design, we study CI test cases
(i.e., test cases that are executed as part of the CI process)
by analyzing the code dependencies in 11 large-scale open-
source systems. We study code dependencies from two
different perspectives: CI execution in relation to test impact
analysis, and CI test case design. To study the effect of code
dependencies on test impact analysis, we follow prior stud-
ies on static test impact analysis [7, 8] to uncover the class
dependency graph and identify the percentage of test cases
that are impacted (i.e., need to be executed) by the changed
code. If there is a high degree of dependencies between
test cases and source code files, the number of impacted
test cases would be high; and thus, the effectiveness of test
impact analysis will be impacted. We analyze the daily code
changes (i.e.,, commits) in the studied systems for a period
of 12 months. We found that daily changes on a relatively
small number of files (median values range from 3 to 28 files



per day) can impact (i.e., have dependencies with) around
50% or more of the test cases.

To study code dependencies in relation to test case
design, we analyze the dependencies between test cases and
source code files (and vice versa), and the dependencies
among test cases. We found that most test cases cover the
integrated behaviour of the software (i.e., 75% to 97% of
the test cases cover multiple source code files), and there
exists a certain degree of dependencies among test cases
(i.e., 18% of the test cases have dependencies with other
test cases). Finally, we conducted a qualitative study on
the reasons that cause the dependencies among test cases.
We uncovered four dependency-related test smells that may
negatively affect test maintenance and execution.

The paper makes the following contributions:

e We found that the number of daily changed files
is often small (median range values range from 3
to 28 classes across the studied systems). However,
most of the test cases (around 50% or more) have
dependencies with the modified files and may need
to be re-executed in every build.

e The studied test cases often focus on testing the
integrated behaviour of the system. On average, 15%
of the test cases have dependencies with 20 or more
source code files. We also found that the source code
files in a test case often belong to different packages
(i.e., cover various business logics).

e We found that, on average, 18% of the test cases
have dependencies with other test cases. Our man-
ual study found that most dependencies are caused
by four reasons: inheritance between test cases, test
cases containing public test utility methods, shared
variables among test cases, and test cases creating
instances of other test cases or using the instances as
parameters.

o We documented four dependency-related test smells
that we manually uncovered. We reported some
instances of each test smell to developers, and the
instances are either confirmed or fixed.

Our paper provides an important first step to study and
understand the design of CI test cases in terms of code
dependencies and their impact on the effectiveness of test
impact analysis. Our findings can help developers improve
test case design by refactoring unneeded code dependencies
(e.g., the test smells that we identified), and may inspire
future software testing research to further improve test
design and test execution efficiency in continuous testing.
We release the replication package of this study, including
the studied data, code, and the results of the manual studies
(https:/ /sites.google.com /view /codedependencies).

Paper Organization. Section [2| introduces the background
and related work of CI testing. Section [3| describes our stud-
ied systems and the methodology to study code dependency
and test impact analysis. Section ] presents the result of test
impact analysis and further shows the dependency between
test cases and source code classes, and among test cases. Sec-
tion |5/ summarizes the key findings and their implications.
Section [f] discusses the threats to validity. Finally, Section
concludes the paper.

2 BACKGROUND AND RELATED WORK

In this section, we discuss the background and related work
of continuous integration and testing, test dependency, and
test case prioritization and selection.

Continuous Integration and Testing. Continuous integra-
tion (CI) is the practice of frequently integrating and merg-
ing developers’ code changes to a central code repository. To
reduce the manual effort in the CI process, developers often
use automation tools such as Jenkins [10] for automated
code integration, compilation, and testing. The CI process
can be triggered by the automation tools based on a cus-
tomized schedule to integrate the most recent code changes.
As part of the CI process, continuous testing is to verify the
quality of the integrated code by automatically executing
test cases. A common practice is to run the test cases either
after a fixed period (e.g., once per day in Hadoop) or after
a consecutive number of commits (e.g., eight commits in
Ericsson [11]). A prior study [12] found that CI improves
software development productivity and helps reveal more
bugs. Developers often use different build systems, such as
Maven, to manage the test execution. In each build, Maven
would automatically execute all the test cases specified in
its build script and generate a final test report. The concept
of continuous testing was introduced by Saff et al. [13] as
a way to help developers rapidly identify regression errors
at an early stage and to reduce development waste. Muslu
et al. [14] discussed the benefit of leveraging the continuous
testing process to detect system errors caused by incorrect
data. Their research illustrates that continuous data testing
can be used to address important data debugging problems.
Chen et al. [15] documented their industrial experience on
how they integrate non-functional (i.e., performance) tests
into CI automation pipeline.

Despite the success, practitioners are faced with chal-
lenges when deploying continuous testing in practice due
to the high overhead. A recent study by Memon et al. [[16]
describes techniques adopted by Google to scale up contin-
uous testing (i.e., 2 billion LOC and 150 millions of test runs
per day). On the core of the scalability problem is the code
dependency, i.e., between source code and test, and among
test cases. In this work, we study continuous testing from
the perspective of code dependencies (between source code
classes and test cases, and among test cases) in 11 large-
scale open-source systems. We study code dependencies
from two different perspectives: CI execution in relation to
test impact analysis, and CI test case design. Our study pro-
vides a different perspective and presents an important step
towards understanding and improving test case execution
and design.

Test Case Prioritization and Selection. There exist many
prior studies on test case prioritization (TCP) and selection
(TCS) techniques. TCP techniques prioritize the executions
of test cases that are likely to fail (i.e., developers can
work on resolving the failing test cases as soon as possi-
ble) [17, 18, [19} [20] 21} 22} 23] 24]. On the other hand, TCS
techniques select a subset of test cases to significantly reduce
the execution time [1} [2, 3] 4, 5, [6]. Recently, researchers
proposed to perform test case prioritization and selection
in continuous testing for better efficiency. Elbaum et al. [25]
adopt a combination of test case prioritization and selection



techniques in practice to make continuous testing more cost-
effective. Memon et al. [16] aimed to provide more prompt
feedback from continuous testing (i.e., reducing waiting
time) for developers after a commit is submitted. They
proposed an approach that leverages factors on test break-
ages or fixes to improve test case prioritization. Marijan et
al. [26] present a case study of using test case prioritization
in industry. Zhu et al. [27] propose to re-prioritize the test
cases that are more likely to fail based on historical test
executions in continuous testing. Luo et al. [28] compared
four static TCP techniques with the state-of-the-art dynamic-
based approach. Their evaluation of 58 Java systems shows
that static techniques can be very effective in terms of fault
detection and its cost reduction.

Companies such as Microsoft [9] use test case selec-
tion and test impact analysis to select only the impacted
test cases (i.e., test cases that have dependencies with the
changed code) to reduce test execution overhead and make
continuous testing scalable to large codebases. Engstrm et
al. [29] studied 28 test case selection techniques and classi-
fied them according to properties such as software language,
test selection approach, and test selection granularity. The
study highlights that there are no strong differences between
these techniques and no technique was found to be defi-
nitely superior to others. Legunsen et al. [8] compared class-
level and method-level static TCS techniques with Ekastazi
(a dynamic TCS technique) in 985 revisions of 22 Java
systems. Their result showed that static TCS at the class-
level shows promising results and have comparable per-
formance with dynamic-based techniques. They also found
that method-level analysis contains too many false positives.
They suggested that researchers should continue to improve
static TCS techniques at a coarser granularity. One major
difference between our work and the study by Legunsen et
al. [8] is that they did not consider the accumulative testing
overhead if the test cases need to be executed frequently,
e.g., every day in a CI setting. Our study analyzes the
amount of time that can be saved if applying test impact
analysis over a one-year period.

Prior studies on TCP and TCS are evaluated in a non-CI
setting. Unlike traditional software development where test
cases are executed once in a while, having a high degree
of code dependency may have a larger accumulated testing
overhead in CI due to frequent code integration and testing.
Hence, better modularity will not only help improve test
maintenance but will also benefit the effectiveness of test
case prioritization/selection. To better understand the effec-
tiveness of test impact analysis in CI settings and provide
insights on improving the modularity of test case design,
we study CI test cases by analyzing the code dependencies
in 11 large-scale open source systems. We first study the
effect of code dependencies on test impact analysis in CI
settings, then we zoom in and further study test case design
from the perspective of the dependencies between test cases
and source code files, and among test cases. We also dis-
cuss some dependency-related test smells that we manually
uncovered.

Studies on Test Case Dependencies and Quality. There
exist a few studies related to dependencies among test cases
from different perspectives. Zhang et al. [30] empirically
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studied the assumption of test independence, which is re-
quired by many test case prioritization (TCP) and test case
selection (TCS) techniques. They found that the dependen-
cies between test cases may cause TCP and TCS techniques
to fail. Gambi et al. [31] presented an approach named
PRADET to detect test dependency through a systematic
and data-driven process. Mocking practices may also reduce
test case dependencies. Spadini et al. [32] conducted an
empirical study on the mocking practices in unit tests.
Their study showed that developers often mock external
dependencies (e.g., web services), and maintaining mocking
codes introduces additional overhead. Pinto et al. [33] stud-
ied the evolution of test cases. They found that developers
often refactor and modify/delete test cases in addition to
repairing test cases. There are also many studies that focus
on studying the test quality concerns, e.g., flaky tests. Luo
et al. [34] empirically identified the root causes of flaky
tests, i.e., a test sometimes fail and sometimes pass. They
found that flaky tests are commonly caused by test orders,
concurrency, and asynchronous waits. Vahabzadeh et al. [35]
empirically studied bugs in test code and found that flaky,
semantic, and environment-related bugs are common prob-
lems. Palomba et al. [36] found that more than 50% of the
flaky tests contain test smells, and removing the smells can
help improve software design and test flakiness.

Different from prior studies, we first study the effec-
tiveness of test impact analysis. We find that, even though
the number of changed files is often small, the number of
impacted test cases is high. Our study on code dependency
shows that most test cases are related to system integration,
which has a higher degree of dependencies. For the depen-
dencies among test cases, we find that most dependencies
are caused by test case inheritance. Our qualitative study
further reveals several test smells in which unnecessary
dependencies could be removed. Such test smells may
cost additional maintenance effort, increase maintenance
difficulty, cause unstable test environments and test results
(i.e., flaky tests), and reduce the effectiveness of test impact
analysis.

3 EXPERIMENTAL SETTINGS AND METHODOLOGY

Experimental Settings. In this paper, we conduct our case
study on 11 open-source Java systems. Table |1| shows an
overview of the studied systems. The domain of the studied
systems ranges from databases, distributed computing, and
cloud computing to communication and web services. We
analyze all the Java files in the 11 studied systems. We
choose these systems because they are large in scale, follow
the continuous testing practice, actively maintained, and
commonly used in industry. The studied systems strictly
follow the continuous integration (CI) practices, and use
Jenkins or TravisCI for test automation and code integra-
tion [10]. They all schedule daily builds on Jenkins or
TravisCI that compile the system and run the test cases.

Uncovering Code Dependency Graph We use Java-
Parser [37] to statically uncover the dependencies in the
studied systems. JavaParser is an open-source Java static
analysis framework that supports the latest version of Java.
We first construct a class-level dependency graph that in-
cludes both the test cases and source code files. The de-



TABLE 1
An overview of the studied systems.

System Version Release LOCin LOCin Num. files Num. files

date source test in source in test
CXF 33.0  Jan. 2019 694K 413K 39K 3.2K
Flink 1.71 Dec. 2018 483K 492K 3.9K 2.6K
Hadoop 3.20 Jan. 2019 1,097K 896K 6.4K 3.5K
HBase 212 Jan.2019 554K 327K 22K 15K
jclouds 212 Feb. 2019 332K 237K 3.6K 22K
Kafka 21.0 Now. 2018 181K 136K 13K 0.6K
BookKeeper 49.0  Feb. 2019 193K 114K 1.5K 0.5K
Hive 3.1.0 Jul. 2018 1,221K 327K 4.6K 1.3K
Jetty 10.0.0.beta0  May. 2020 307K 237K 1.6K 1.3K
Cucumber-JVM 622 Jul. 2020 29K 31k 0.4k 0.4K
Californium 23.0 Jun. 2020 88K 46K 0.6K 0.2K

pendency graph stores the information about whether there
exists a dependency between two files (i.e., either a test case
or source code file). We identify a Java file as a test case if it
uses APIs from testing frameworks such as JUnit or TestNG
(i.e., using the @Test annotation). Similar to the work by
Orso et al. [7]], we also consider the inheritance relationships
when constructing the dependency graph. For each class,
we consider its dependency with the related classes that are
on the same inheritance hierarchy. In addition, we exclude
binaries and only analyze the dependency if we can find a
corresponding source code file (i.e., only analyze the system
source code and exclude external libraries).

Applying Test Impact Analysis. Similar to prior stud-
ies [7, 18, [1, 2, we consider a test case is impacted by a
given commit if the test case may need to be executed due
to having dependencies with the changed files (i.e., either
source code or test files). Our test impact analysis follows
the technique proposed by Orso et al. [7], which can be
understood as a conservative static coverage analysis at the
class-level. Prior studies [8} 28] found that static test impact
analysis techniques achieve a similar level of performance
compared to dynamic-based techniques, and class-level de-
pendency gives better results compared to method-level
dependency. As a result, we perform the impact analysis by
analyzing the static dependencies at the class level between
test cases (i.e., test classes) and the changed source code
files. In particular, we identify the impacted test cases based
on the two following criteria: 1) the test case directly or
indirectly calls the changed file; or 2) the changed file
directly or indirectly calls the test case (e.g., the changed file
is a test case that calls another test case). To formalize our
approach using the dependency graph, we call that node_A
(i.e., represents either a test or a source code class) is an
ancestor of node_B if there exists a path from node_A to
node_B (i.e., node_A directly or indirectly calls node_B).
From the dependency graph, we first collect all the ancestor
nodes of the nodes that represent the changed files in one
commit, named all_ancestors. Then, the set of all_descendants
is inferred by taking the union of all the descendant nodes
of every node in all_ancestors. Finally, we only consider the
nodes that represent test cases in all_descendants as impacted
test cases that have dependencies with the changed files.

4 STUDYING CODE DEPENDENCIES OF TEST
CASES

In this section, we study code dependencies in test cases
from two different perspectives, CI execution in relation to
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test impact analysis, and CI test case design, by answer-
ing four research questions (RQs). In RQ1, we study the
effectiveness of test impact analysis in the CI setting and
study the accumulated test execution overhead. In RQ2 and
RQ3, we zoom in to study test design from the perspective
of code dependencies: between source code files and test
cases (RQ2) and among test cases (RQ3). Finally, in RQ4, we
manually explore potential dependency-related test smells
that may help reduce code dependencies in test cases and
inspire future testing research. For each RQ, we provide the
motivation, approach, and results.

RQ1: What is the impact of dependencies from the per-
spective of test impact analysis in continuous testing?

Motivation. Due to the high frequency of test executions
in CI settings (e.g., at least once or even several times on
a daily basis), there may be a larger accumulated testing
overhead if there is a high degree of dependencies between
source code and tests, and among test cases. In this RQ, we
seek to study, for each run of continuous testing triggered
by code integration, how many test cases are impacted (i.e.,
have dependencies with the changed code and need to be
executed). We also investigate the test execution time that
can be potentially saved if developers apply test impact
analysis.

Approach. Our studied systems run continuous testing on
a daily basis. We use the same frequency (i.e., every day)
to analyze the impacted test cases in each run of contin-
uous testing. We apply the test impact analysis approach
described in Section B} We consider the code changes in
the past year (i.e., 365 days) prior to the release of the
studied version of the systems (see Table [I). For each day,
we construct the dependency graph, collect all the commits
on that day, and identify which files (i.e., either test cases
or source code files) are changed in the commits. Finally,
based on the dependency graph (Section [3) and the list of
changed files, we calculate the percentage of test cases that
was impacted in each day.

Furthermore, we analyze the potential reduced time that
continuous testing can benefit from test impact analysis.
We crawl the readily-available execution logs from the CI
platforms of the studied systems (i.e., Jenkins and Travis CI).
Although the format of the log may be different in each CI
platform or system, the logs generally contain information
such as the name of the test case, test execution result
(i.e., pass or fail), and test execution time. We analyze the
execution time of the test cases that are not impacted by
the code change (i.e., potentially saved time) and compare
that with the actual execution time (i.e., the time to run
all the test cases). To obtain enough data for analysis, we
monitored the CI platforms for 30 days (i.e., from 2020-06-
07 to 2020-07-05) and collected the generated execution logs.
Note that some systems configure the CI platform to keep
almost one month of test execution logs, while some systems
only store the logs for a few days. In addition, some systems
did not execute the test cases due to having no code changes.
Hence, the number of collected execution logs varies across
the studied systems.

Results. Although the median number of changed files is less than
10 in most studied systems, the median percentage of impacted



TABLE 2
Median number of daily commits and changed files, excluding the days
when there are no code changes.

System Med. num. of commits Med. num. of changed files
CXF 3 5
Flink 7.5 17
Hadoop 8 28
HBase 3 8
jclouds 1 3
Kafka 3 8
Hive 6 22
BookKeeper 2 7
Jetty 6 12
Cucumber-JVM 2 3
Californium 3 6
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Fig. 1. The distributions of the percentage of test cases that are im-
pacted by the daily code changes. The red dot illustrates the mean
value.

test cases may go up to 72%. Table 2| shows the median
number of daily commits and changed files. Note that we
exclude the days when there are no code changes. We find
that developers usually only change a small number of
files in a day. As shown in Table [2, the median number
of changed files is less than 10 in 7 out of 11 studied
systems. Considering the total number of both source code
and test files in the studied systems (Table , developers,
on average, make changes to less than 0.5% of the files per
day. We also find that the median number of daily commits
is less than 10 in all studied systems.

Figure[l|shows the distributions of the percentage of test
cases that are impacted by the daily commits. In general, the
median percentage of impacted test cases goes up to 72%.
For Flink, Hadoop, Kafka, Hive, Jetty, and BookKeeper, the
median percentage of impacted test cases is around 40%
to 63%. Californium and Kafka have a median percentage
of around 26% and 33%. Among all the studied systems,
HBase’s test cases are impacted the most (the median per-
centage of impacted test cases is 72%). In other words,
developers still need to execute most test cases even if they
apply test impact analysis to reduce test execution overhead.
We find that the number of impacted test cases is smaller for
CXE, Cucumber, and jclouds: the median percentage of the
impacted test cases is less than 10%. After some investiga-
tion, we find that the median number of daily changed files
is also small for CXF, Cucumber, and jclouds (i.e., 5, 3, and
3 files, respectively), so the number of impacted test cases is
lower than that of the other studied systems. Nevertheless,
the average number of impacted test cases is still high for
CXF and Cucumber (e.g., over 20%).
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Fig. 2. The comparison of the percentage of changed files and the
percentage of impacted tests over the one-year period.

TABLE 3

The details of the collected Cl builds for analyzing the execution time of

the impacted tests.

System Num. of collected  Ave. test execution

CI builds time (in seconds)
CXF 19 39,301.00
Flink 31 4,828.30
Hadoop 59 13,595.00
HBase 116 34,510.00
jclouds 40 571.49
Kafka 77 10,886.90
Hive 46 7,598.84
BookKeeper 45 64,406.00
Jetty 41 2,188.00
Cucumber-JVM 100 60.31
Californium 30 401.00
Total 604 178,346.84

Figure 2] visualizes the relationship between the percent-
age of changed files (i.e., the upper part of each plot) and
the percentage of the impacted test cases (i.e., the lower
part of each plot) of each daily build in the one-year time
period. We can see that the studied systems had experienced
different levels of development activities over the studied
period. In general, we see that if there are more changed
files, more test cases are impacted. We further compute the
Spearman correlation between the percentage of changed
files and impacted test cases, and we find that there is only
a moderate positive correlation (i.e., correlation ranges from
0.43 to 0.68) except for Cucumber (i.e., the correlation is
0.88). Our finding shows that, even though there is a certain
degree of correlation, the correlation is not very strong.
Namely, changes to some source code files may have a larger effect
on the number of impacted test cases.

The effectiveness of test impact analysis may vary across
systems, depending on the test execution overhead. The median
percentage of saved test execution time is around 50% for most



of the studied systems. Table 3 lists the details of the collected
CI builds for the analysis on the test execution. We find that
the average test execution time varies significantly across
the studied systems. For larger systems such as BookKeeper,
one run of continuous testing (i.e., executing all test cases)
takes over 17 hours to complete. For smaller systems such
as Cucumber, the test cases only take one minute to run.
The results indicate that the benefit of test impact analysis
is significantly higher for larger or more complex systems
compared to smaller systems. Reducing the accumulated
test execution overhead may further reduce the needed
resources for testing and increase test execution frequency.

Figure [3| shows the distribution of the percentage of test
execution time that can be potentially saved after applying
test impact analysis. Each data point represents one CI
build that we collected (Table . For CXEF, jclouds, Kafka,
Cucumber, and Jetty, over 80% (median) of the test execution
time may be saved after applying test impact analysis.
For the remaining systems, namely BookKeeper, HBase,
Californium, Flink, Hadoop, and Hive, a median of 50%
or less of test execution time may be saved after applying
test impact analysis. Among the studied systems, we find
that the median percentage of reduced test execution time
is very small for HBase. After some investigation, we find
that for the analyzed CI builds, developers modified some
files that are highly dependent upon, which causes many
test cases to be selected. For example, developers modified
HBaseTestingUtility 13 times in the analyzed CI builds, and
this class has dependencies with more than 760 test cases.
Therefore, such files that have many dependencies with
other files may greatly reduce the effectiveness of test impact
analysis, even worse if such files are changed frequently.

Our finding shows that, although the number of daily
changed files is often small in the studied systems, the
percentage of the impacted test cases can be large (median
around 50% for 6 out of 11 studied systems). We also
concluded a similar finding in terms of execution time of the
impacted tests, and the corresponding percentage of saved
time. For 6 out of the 11 studied systems, the impacted test
cases may consume over 50% of the total test execution. The
result indicates that there is a high degree of dependencies
among test cases or between test cases and source code
files, which affect the effectiveness of test impact analysis.
To further understand the reasons for such dependencies
and provide insights on reducing test execution overheads,
we conduct detailed analysis on code dependencies in RQ2
and RQ3.

Although the number of daily changed files is small, most
test cases (around 50% or more) are impacted. Such a high
degree of dependencies affects the effectiveness of using test
impact analysis to reduce testing overheads. Future research
should consider more specialized techniques (e.g., through
refactoring) that can reduce certain code dependencies, to
improve the effectiveness of test impact analysis.
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Fig. 3. The distributions of the reduced test execution time after applying
test impact analysis. The red dot illustrates the mean value.

RQ2: What is the degree of dependencies between test
cases and source code files?

Motivation. To reduce test execution overheads, developers
may need to find a subset of the test cases that are impacted
by the given code changes. However, as we found in RQ1,
even though the number of changed files is small in each
test execution, many test cases are still impacted. In this
RQ, we further study test design from the perspective of the
dependency between the test cases and source code files.
The findings will provide an overview of how the systems
are tested and may provide insights on how to help improve
the current testing practices and inspire future research.

Approach. To answer this RQ, we statically identify test
cases and uncover their dependencies with source code files.
In continuous testing, developers leverage build systems,
such as Maven, to execute all the test cases under the
test directory or the directory specified in the build script.
However, there may be other non-test files, such as utility
or helper files, in test directories. Therefore, the first step
is to identify true test cases. As discussed in Section 3] we
identify a file as a test case if it contains the @Test annotation
(i.e., regardless of the directory where the file is located).
We identify a file as a source code file (i.e., code related
to the actual business logic) if the file is located outside of
the fest directory (i.e., the directory path does not contain
the word “test” to avoid including test utility files) and
does not contain any testing related APIs. Note that we
only consider the direct dependency between a test case
and its corresponding source code files in this RQ. Direct
dependency better reflects test design, so focusing on direct
dependencies allows us to analyze the composition of CI
tests and CI test design: When developers design a test
case for Class A, developers may not care much about the
dependencies of Class A (i.e., the indirect dependencies),
but only Class A itself (i.e., the direct dependency of the test
case).

The second step is to analyze how many source code files
a test case tests. If a test case depends on multiple source
code files, we further investigate the average package dis-
tance among the source code files [38]. The average package
distance gives us insights on the semantic similarity of the
source code files covered by the same test case based on the
structural closeness (e.g., whether a test case is testing the
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Fig. 4. The distribution of the number of source code files that are called in a test case.

interaction of various components in the system) [38} 39, 40].
If two source code files are used to implement the same or
similar functionality, they are more likely to be located in the
same or nearby package; thus, have a low package distance.
Because the package structure is closely associated with the
directory structure, we implement the following three steps
to calculate the average package distance among source
code files. The calculation is an iterative process based on
pairwise package distance calculations.

1) We build a directory tree (i.e., each node in the tree
represents a directory name in the path) for all the
source code files that are invoked by a test case and
calculate the depth of the tree (N).

2) For every pair of source code files, from the top
to bottom in the built directory tree, we find their
last common parent node at depth M. The package
distance of the two source code files equals to N-M-
1.

3) Weiteratively compare every pair of the source code
files and calculate the average package distance
among the source code files.

Asan example, test case TestNamenodeResolver. java
in Hadoop calls three source code files below. The paths are
simplified for illustration.

ClassA: . /hadoop—-common/src/java/hadoop/conf/
Configuration. java

ClassB: ./hadoop-hdfs-rbf/src/java/hadoop/hdfs/
server/federation/ store/MembershipState. java
ClassC: ./hadoop-hdfs-rbf/src/java/hadoop/hdfs/

server/federation/router/RBFConfigKeys. java.
The paths of the three source code files form a tree with a
depth of N=9. ClassB and ClassC have a common parent
at depth M=7. The package distance of ClassB and ClassC
is calculated as N-M-1=1. Similarly, the other pair-wise
package distances are calculated as 8 for ClassA and ClassB,
and 8 for ClassA and ClassC. Finally, the average package
distance is calculated as (8 + 8 + 1)/3 = 5.67.

Mocking, as a common testing practice, may introduce
false dependencies. To avoid counting mocked objects as
dependencies, we automatically check whether a dependent
class is a mocked object or not. Mockito, EasyMock, Power-
Mock, and MockWebServer of OkHttp are the four mocking
frameworks that are used in our studied systems. These
mocking frameworks follow a similar way of creating mock
objects: 1) using annotations (e.g., @Mock) and 2) invok-
ing mocking methods (e.g., Mockito.mock () ). To exclude
the dependencies of mocked objects, we follow a similar
approach that is proposed in a prior study [41]. We first
identify the mocking frameworks used in each studied
system. Then, if a test case mocks the implementation of
an object, we mark the corresponding class as mocked and
exclude the dependency of the mocked object.

Results. Most test cases focus on testing the integrated be-
havior of the system. Figure [i] shows the number of source
code files that are tested in a test case (after removing
source code files that are called due to mocking). Even
though many prior studies [42, 43| 44] focus on study-
ing unit tests and help reduce unit test execution over-

heads [42) 43| [44), 145} 46, [47, [48| 49], we find that most test
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code files in a test.

cases focus on testing multiple source code files. In all the

studied systems, only 6%-24% of the test cases focus on

testing a single source code file, and all other test cases test

multiple source code files. In general, most test cases (16%

to 34%) in the studied systems test 5 to 10 source code files.

We also find that a large number of test cases test more than

20 source code files in HBase, jclouds, and Hadoop (20.9%,

29.4%, and 20.9% respectively). Figure [5| further illustrates

the average package distance of the source code files in

each test case. The majority of the studied systems have

a median package distance that is larger than five. Such a

large package distance shows that many test cases cover a

wide variety of functionality. In short, our findings highlight

that developers spend a significant amount of efforts on
testing the integrated behaviour of the system. Based on our
finding, a potential way to improve the effectiveness of test
impact analysis in continuous testing is to prioritize the test
cases based on their degree of dependencies. Inspired by the
principle of fail-fast [50], if the basic functionality of a source
code file cannot even pass the test cases, developers may
then consider skipping executing other more complicated
test cases that test the integrated behaviour of the system

(i-e., test cases that cover more than one source code file).

e M)
Most test cases executed in continuous testing cover multiple
source code files in different packages, and many test cases
even cover more than 20 files. Future studies should consider
the peculiarity of the focus in continuous testing when de-
signing approaches to help developers reduce test execution
overheads.

-

RQ3: What is the degree of dependencies among test
cases?

Motivation. Test cases should be independent of each other
to ensure the quality of individual source code file or mod-
ule. As systems evolve, there may be a certain degree of
dependencies among test cases [30], which can increase the
test maintenance difficulty and reduce the effectiveness of
test impact analysis. Therefore, in this RQ, we empirically
study the degree of dependencies among test cases.

Approach. We conduct both quantitative and qualitative
studies on the dependencies among test cases. For the quan-
titative study, we study the degree of dependencies among
test cases (i.e., how many test cases call other test cases)

TABLE 4
Number of test cases, test utility files, and the number of test cases that
have dependencies with more than one test cases. Med. dep. and Max.
dep. shows the median and the maximum number of dependencies
between one test case and other test cases. We exclude the test cases
that do not have any dependencies with other test cases when
calculating the median.

System No. test No. test No. test cases Med. dep. Max. dep.
cases utils. with dep.
BookKeeper 449 76 16 (3.6%) 1 1
CXF 1,226 2,039 127 (10.4%) 1 5
Flink 1,946 641 463 (23.8%) 1 4
Hadoop 2,823 619 509 (18.0%) 1 6
Hive 819 437 104 (12.7%) 1 3
HBase 1,177 287 164 (13.9%) 1 2
jclouds 2,063 119 867 (42.0%) 2 13
Kafka 437 124 17 (3.9%) 1 1
Jetty 711 580 51(7.2%) 1 2
Cucumber-JVM 149 230 6(4.0%) 1 1
Californium 143 65 0(0%) 0 0

using the dependency that we uncovered (Section[3). Similar
to RQ2, we analyze the direct dependency among these test
cases. For the qualitative study, we take a statistical sample
to understand the reasons for the dependency. In total, we
studied 326 sampled test cases out of 2,324 in the studied
systems (based on a 95% confidence level and 5% confidence
interval [51]) that have direct dependencies with other test
cases (identified in the quantitative study step).
The process of our manual study contains three phases:

e Phase I: Al derives a list of 326 randomly sampled
test cases that have code dependencies with other
test cases. The sample is based on a 95% confidence
level and 5% confidence interval.

e PhaseII: Al studies 100 randomly sampled test cases
and studies the reason for the dependency. Al de-
rives a draft list of categories based on the observa-
tion. The three authors then collaboratively label the
100 test cases using the draft list of categories. During
the process, the categories are revised and refined.

e Phase III: A1 , A2, and A3 independently apply
the derived categories to the remaining sampled test
cases. Any disagreement is discussed until a consen-
sus is reached. In this phase, no new categories were
derived.

Results. On average, 18% of the test cases have dependencies
with other test cases. Table ] shows the number of test cases,
test utility files (i.e., non-test files in the test directory), and
the number of test cases that have dependencies with other
test cases. We find that there are many test utility files in
the studied systems. However, even though developers may
be using test utility files to refactor test code and assist in
writing test cases, we still find that 3.6% to 42% of the test
cases (an average of 15%) have dependencies with other test
cases. Table [ also shows the median and the maximum
number of dependencies among test cases (we exclude the
test cases that do not have dependencies with other test
cases when calculating the median). We find that most of the
test cases only have a direct dependency with one other test
case (median is 1 in most systems), but some test cases may
have dependencies with up to 13 other test cases. In short,
our finding shows that even though dependencies between
test cases may increase test maintenance difficulties [52, 30],
such dependencies are still common in the studied systems.



TABLE 5 TABLE 6
An overview of the manually derived reasons for dependencies among Number of test cases extending other classes. Med. DIT shows the
test cases. median DIT number of all test cases with non-zero inheritance. Max.
inherit layer shows the maximum DIT number among all test cases in
Reason Definition Percentage one system.
Inheritance Test cases extend another test case. 79.4%
Test cases contain fest utilities  1€St cases contain test utility methods  13.2% System No. tests inherit Med. DIT Max. DIT
~  which are also used by other test cases. other classes layer layer
Shared variables Variables are accessed by more than one  2.1% BookKeeper 224 (49.9%) 1 10
test cases. Hadoop 1,071 (37.9%) 2 13
Test cases use instances of other test cases  4.6% H)]?ase 383 (32‘5:/0) 1 8
Shared test case as parameters or create objects of other test C‘ F 629 (51.6 0/ o) 2 9
cases. Flink 1,390 (71.4%) 2 11
jclouds 1,375 (66.7%) 3 11
Other reasons such as returning an in-  1.2% Kafka 56 (12.8%) 1 6
Others
stance of a logger that refers to another test Hive 189 (23.1%) 1 6
case class. Jetty 257(36.1%) 1 9
Californium 21(14.7%) 1 2
Cucumber-JVM 7(4.7%) 1 1

Most test case dependencies are caused by test case inheritance
and having public test utility methods in test cases. Table
shows the five manually-uncovered reasons for dependen-
cies among test cases and the corresponding distribution.
Inheritance is the most common reason and accounts for
79.4% of the dependencies among the studied test cases. We
also find that 13.2% of the dependencies is caused by a test
case calling other test utility methods that are declared in
another test case. Namely, some test cases have public test
utility methods that are used by other test cases. However,
such a design creates unnecessary dependencies and should
be refactored. A better design that may help improve test
code comprehension is to create a separate test utility file
instead of having the utility method implemented in a test
case [52]. 2.1% of the dependencies among test cases are
caused by having more than one test cases that access a
static class field (e.g., static instance variable). As shown
in a prior study [30], such dependency may cause flaky
tests and reduce the reliability of the test result. 4.6% of the
dependencies among test cases are caused by an instance
of a test case being created in another test case or being
passed as a parameter to another test case. In such cases, the
assumption of test case independence may be violated and
the test cases should be refactored [30]. Finally, we find that
1.2% of the dependencies belong to the “Other” category.
For example, developers may be mistakenly using the class
of TestCaseB to create a logger in TestCaseA, which may
cause difficulties when using logs for debugging [53].

Since inheritance is the most dominating reason for
dependencies among test cases, we further study the inher-
itance relationship in the test cases (Table [6). We find that
inheritance is widely used in the test cases: 4.7% to 71.4%
of the test cases extend other classes (an average of 46.91%).
We use DIT (i.e., depth of inheritance) that is proposed by
Chidamber and Kemerer [54] to study class inheritance. DIT
is a classic metric in object-oriented design to quantify the
level of inheritance, and is calculated as the length of the
maximum path from a class to the root of the inheritance
tree. For most of the studied systems, the average DIT of all
test cases is either two or three. The maximum DIT ranges
from 1 to 13 in the studied systems. Even though developers
may use inheritance to share common test setup and tear
down code across test cases [52], such complex inheritances
(i.e., a large DIT) may increase the dependencies among
test cases and increase maintenance difficulty [55] 56) 57].
Our findings reveal common types of test case coupling

in continuous testing. Future studies may build upon our
findings and help developers refactor the test cases, and
reduce test maintenance and execution overhead.

On average, 18% of the test cases have dependencies with
other test cases. Most dependencies are caused by test case
inheritance and accessing utility methods in test cases.

RQ4: What are the dependency-related test smells that
may negatively impact test case design?

Motivation. Dependencies may introduce spaghetti code
and increase the difficulty of test maintenance. For example,
the independence assumption of test cases may be violated
due to unnecessary code dependencies [30]. RQ3 shows
that there exists non-trivial code dependencies among test
cases. In this RQ, we further conduct a qualitative analysis
on the sampled test cases to identify dependency-related
test smells and recommend how to fix them. Identifying
common patterns of excessive and even problematic de-
pendencies will shed light to reduce code dependencies
among test cases; and hence, improve the effectiveness of
test impact analysis and test quality [58, 59, [60].

Approach. Similar to RQ3, we manually examine the design
of each test case in a randomly sampled set of 326 test
cases based on 95% confidence level and 5% confidence
interval (the same set that we used in RQ3). Three of the
authors collaboratively examine the design of each test
case, the dependencies with other test cases, and potential
negative effects caused by the identified dependencies. Any
disagreement is discussed until a consensus is reached. At
the end of this phase, we obtain four types of test smells
that might have a negative effect on test dependencies and
design. Finally, Al reported at least one instance for each
type of the test smell to the issue tracking system (i.e., Jira)
to get confirmation from developers.

Results. In total, we uncovered four dependency-related
test smells (26 instances in the 326 manually studied test
cases) [61]. We reported at least one instance for each type
of the test smell, and all of the reported instances are either



confirmedEﬂ or fixed by developerﬂ Below, we discuss the
test smells that we uncovered during our manual analysis.
For each test smell, we provide a description and an exam-
ple, and discuss the negative effect and possible solutions.
Test Smell 1: Duplicate test runs caused by inheritance.
Description. We find that in some situations, the inherited
test methods may be executed twice: once in the parent test
case (i.e., a non-abstract class) and once in the child test case.
The test methods from the base test case will be executed
when running the base test case. Then, the inherited test
methods will be executed again when running the child test
case. Note that the child test case may inherit the test fixture
from the parent test case; thus, the same test methods are
executed multiple times in the same test environment.
Example. In CXF, there are 14 test methods inherited by test
case AssociatedManagedConnectionFactoryImplTest
from the non-abstract base test case
ManagedConnectionFactoryImplTest. These 14 test
methods will be executed twice, once by each of the two
test cases. In total, we found 8 instances of this test smell in
the manually studied test cases.

Negative Effect. Duplicate test runs will waste testing re-
sources and increase test overhead. The frequent executions
of continuous testing (i.e., due to frequent code changes), ex-
aggerate the negative effect of this test smell. Moreover, the
base test case and its child test cases may fail together due
to the same issue, which increases the challenge of failure
diagnostic, especially in continuous testing. The severity of
the test smell may also be increased when more test methods
are inherited by child test cases, or more test cases inherit
the same base test case.

Possible Solutions. Developers should try to avoid inher-
itance from non-abstract test cases. If two test cases share
many test methods, a better solution would be to either cre-
ate a test utility class or refactor the common test methods
to a separate test case.

Test Smell 2: Scattered test fixtures caused by inheritance.
Description. Test fixtures are defined in test cases to set up
the environment for test execution. A base test case may
define a general test fixture (i.e., a method annotated by
@BeforeClass or @Before). When a child test case inherits a
base test case, the child test case may define its own test
fixture, but may also call the test fixture of the base test case.
In multi-level inheritance, when each child test case has its
own test fixture, the test fixture code becomes scattered and
difficult to maintain.

Example. In HBase, the test case TestWALReplay extends
AbstractTestWALReplay and implements the test fixture
using the @BeforeClass annotation (Listing|[T). The test fixture
method also calls the test fixture of the base test case (i.e.,
setUpBeforeClass() on line 6). TestWALReplay is further ex-
tended by TestWALReplayBoundedLogWriterCreation
and it adds specific test fixtures and invokes the test fixture
of the parent test case on lines 12-16. In total, we found 12
instances of this test smell in the studied test cases.

1. https:/ /issues.apache.org /jira/browse /HBASE-22814
2. https:/ /issues.apache.org/jira/browse/JCLOUDS-1508
3. https:/ /issues.apache.org/jira/browse /CXF-8092

4. https:/ /issues.apache.org/jira/browse/CXF-8086

5. https:/ /issues.apache.org/jira/browse /CXF-8087
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Negative Effect. Test fixture methods are either executed
before each test method (e.g., @Before), or before each
test case (e.g., @BeforeClass). Scattered test fixtures in
multi-level inheritance may introduce extra test overhead,
such as reducing the understandability of test design
and makes test case evolution more error-prone in
continuous testing. In our manual analysis, we even found
several inconsistencies when developers implement test
fixtures through multi-level inheritance. For instance, in
HBase, the test case TestSecureWALReplay extends
TestWALReplay (defined on line 1 in the above-
mentioned code snippet). However, in contrast to
the sibling test case shown in the above code snippet
(TestWALReplayBoundedLogWriterCreation, line 10),
the overridden test fixture in TestSecureWALReplay

does not «call the test fixture method from the
base class (TestWALReplay) while the test fix-
ture in the all other sibling test cases do (e.g.,
TestWALReplayBoundedLogWriterCreation, line 14).

Such inconsistency may introduce insufficient setup in
the subclass. We also find a few cases where the test
fixture method is overridden, but the implementation in
the test fixture methods are the same. Such unnecessary
code clones may increase test maintenance difficulties.
Finally, the inheritance hierarchy of test fixtures may
violate the assumption of test case independence, i.e., there
exists an anticipated order of calling different test fixture
methods in one inheritance tree. Conflicting configurations
in test fixtures of different sibling test cases may result in
unanticipated test behaviours and unstable test results. Such
negative effects introduce additional diagnosis challenges
when relevant test cases are deployed in continuous testing.
One example of such consequence is flaky tests, which are
often ignored by practitioners and lead to negligence of
true test failures.

Listing 1. The child class extends the parent TestWALReplay class,

but both classes have @BeforeClass annotation for test case setup. The

child class will execute both @BeforeClass methods and may cause

maintenance issue or even unexpected test results.

1| public class TestWALReplay extends

AbstractTestWALReplay {

2 @BeforeClass

3 public static void setUpBeforeClass (
Exception {

throws

conf.set (WALFactory.WAL_PROVIDER, "filesystem");
6 AbstractTestWALReplay.setUpBeforeClass () ;

7 }

8]}

10| public class TestWALReplayBoundedLogWriterCreation
extends TestWALReplay {

11 @BeforeClass

12 public static void setUpBeforeClass (
Exception {

13 TEST_UTIL.getConfiguration () .setBoolean( );
14 // invoke parent’s fixture

15 TestWALReplay.setUpBeforeClass () ;

16 }

17 .

18]}

throws

Possible Solutions. Developers should maintain the inde-
pendence of test fixtures in one inheritance tree. Developers
may use test utility classes to manage test fixtures instead
of using inheritance. Another possible solution is to manage
test fixtures individually and independently in each test case
(i.e., including set-up and tear-down test environment), so


https://issues.apache.org/jira/browse/HBASE-22814
https://issues.apache.org/jira/browse/JCLOUDS-1508
https://issues.apache.org/jira/browse/CXF-8092
https://issues.apache.org/jira/browse/CXF-8086
https://issues.apache.org/jira/browse/CXF-8087

the dependencies of test fixture between base test case and
child test cases can be removed. Developers may also use
JUnit’s @Rule annotation to refactor the code that needs to
be executed before and after a test.

Test Smell 3: Using test case inheritance to test source code
polymorphism.

Description. Developers may implement inheritance in test
cases to test source code polymorphism so that code dupli-
cation of common test methods can be reduced (i.e., follow-
ing the DRY principle — “Don’t Repeat Yourself”). However,
sometimes the unnecessary inheritance relationship in test
cases may increase the difficulty of test maintenance and
make test evolution more error-prone.

Example. In jclouds, there are 49 test cases that extend from
one parent test case (i.e.,, BaseProviderMetadataTest).
All the 49 test cases inherit all the test methods from
the parent test case. On line 3 and line 10 in the
code snippet below, the two child test cases call the
constructor of the parent test case with arguments of
different types. However, the arguments (e.g., Class
SkaliCloudMalaysiaProviderMetadata on line 3, and
class GleSYSProviderMetadata on line 10) inherit the
same parent class. In this example, developers test the
source code polymorphism through the constructors in the
inheritance tree: the constructor of each child test case will
pass arguments of different types to the constructor of the
parent test case. The arguments of different types either
extend or implement the argument types of the parent
test case’s constructor. Such test design may introduce un-
necessary inheritances that may result in more scattered
code (e.g., having 49 separate child test cases that do not
implement any other test methods). In total, we found four
instances of this test smell in the studied test cases.

Listing 2. 49 child test classes inherit the same base class

BaseProviderMetadataTest), but all the child test classes calls

the base class directly and only differ in one parameter.

1| public class SkaliCloudMalaysiaProviderTest extends
BaseProviderMetadataTest {

public SkaliCloudMalaysiaProviderTest () {

3 super (new SkaliCloudMalaysiaProviderMetadata (), \

4 new ElasticStackApiMetadata());

5 }

of '}

§| public class GleSYSProviderTest extends
BaseProviderMetadataTest {

public GleSYSProviderTest () {

10 super (new GleSYSProviderMetadata (), \

11 new GleSYSApiMetadata());

12 }

13) }

Negative Effect. Such test design requires extra maintenance
effort and might introduce errors due to the low main-
tainability. First, if the parent test case is modified (e.g.,
adding additional test methods), developers would need to
review all the child test cases to make sure the modification
is valid to all of the child test cases (49 in total in the
above-mentioned example). Second, if the parent test case
is problematic (i.e., some test methods are buggy or flaky),
many child test cases may also be affected and develop-
ers would need to spend extra time to isolate the issue.
Third, insufficient testing might be overlooked in such a test
design. If only using the common test methods from the
parent test case, developers might neglect to test the unique
aspects of each child test case. Due to the rapid development
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cycle and more frequent code changes, modern software
development heavily relies on automated test execution
(e.g., continuous testing) for quality assurance purposes.
Failing to test certain aspects may lead to insufficient quality
assurance in continuous testing.

Possible Solutions. Such coupling can be reduced by uti-
lizing features commonly provided by testing frameworks.
For example, parameterized tests from JUnit [62] can be
used to run one test case multiple times with different
parameters in one code location (i.e., no need for multiple
copies of the code or using inheritance). Compared to the
scattered locations using inheritance, parameterized tests
provide better maintainability by centralizing the code; and
are thus, easier to maintain. More importantly, to improve
the test efficiency and coverage, developers would also need
tooling support to visualize the coupling among test cases
and to highlight the coupling among the tested classes.
Future research may study automated techniques that help
developers verify whether source code polymorphism is
well tested by existing test cases.

Test Smell 4: Flaky tests caused by accessing shared
resources or variables.

Description. Test cases may be flaky in different test runs
because of accessing shared resources or variables.
Example. The test case JAXRSclientServerWebSocketTest
in CXF defines some test methods and is extended by
several child test cases. One of the child test cases (the
code is shown below) will modify a system property
(i.e., System.setProperty) before running the test methods
inherited from the base test case (line 4 and 5). However, the
child test case does not reset the modified system property
after the completion of a test run (lines 9-11). Hence, the
system property may be changed when running other test
cases, resulting in unstable test environments. In total, we
found three instances of this test smell.

Listing 3. The child class shown below modifies the system property but
does not change it back. Therefore, unexpected test results may happen
when running other test cases.
public class JAXRSClientServerWebSocketNoAtmosphereTest
extends JAXRSClientServerWebSocketTest {

@BeforeClass

public static void startServers() throws Exception ({
1 System.setProperty ("org.apache.cxf.transport." + \
5 "websocket.atmosphere.disabled", "true");

}

8 QAfterClass

9 public static void cleanup() {
10 //this method is empty.

11 }

2]}

Negative Effect. Accessing shared variables violates the
assumption of test case independence [30]. In the above-
mentioned code snippet, the system property is shared
among test cases (e.g., the base and the child test cases).
Modifying the system property and failing to reset it in
the child test case may result in having different test en-
vironments when the order of test case execution changes.
Thus, the test results may become flaky and unstable, which
introduce additional challenges for understanding and per-
forming diagnosis in continuous testing.

Possible Solutions. Tooling support is needed to improve
developers’ awareness of the usage and consequence of
shared variables. Once developers know the existence of



shared variable access, they can take actions to eliminate the
side-effects of such accesses. In the above-mentioned code
example, developers can clean up the test environment and
reset the modified system property in the cleanup method
(lines 9-11, annotated by @AfterClass).

We also analyze the time when the dependency was
introduced for the 26 test smell instances that we uncovered.
We find that three test smell instances were introduced dur-
ing the development of new features, one was introduced
in a bug fixing commit, and the remaining were introduced
at the beginning when source code files were created. Based
on our preliminary analysis, developers may need to pay
more attention to dependency-related test smells when they
initially design and implement the test cases. To further
show the generalizability of the uncovered test smells, we
implemented a static checker and applied it to the studied
systems. In total, the preliminary static checker detects 924
test smell instances. Our static checker is publicly available
and can be found in the replicate package. Future studies
should further investigate the impact of these test smell
instances.

We uncover and document four dependency-related test smells
through a manual analysis. We reported instances of the test
smells and they are either confirmed or fixed by developers.
Fixing such test smells may reduce excessive dependencies and
improve test case design.

5 IMPLICATION AND FUTURE DIRECTIONS

In this section, we discuss our key findings and their impli-
cations. We also highlight future research opportunities and
provide recommendations on the adoption of test impact
analysis in a CI setting.

Adopting test impact analysis in CI settings can reduce
accumulated test execution overhead. Our test impact anal-
ysis results in CI settings demonstrate potential in reducing
the accumulated testing overhead in CI settings. Even for
the least-effective case in our studied systems, an average of
over 20% of the test execution time can be saved for each run
of continuous testing triggered by code integration. Across
all the studied systems, the median percentage of saved time
is around 50%. With the increasing test execution frequency,
test impact analysis, with its current effectiveness, already
shows some benefits if integrated into CI practices.

Needs for further improving the effectiveness of test
impact analysis in a CI setting. Despite the non-trivial test
execution time saved by test impact analysis, we believe
the effectiveness of test impact analysis can be further
improved. Our study reveals that there exists a high degree
of dependencies between source code and test cases, and
among test cases: on average, 15% of the test case have
dependencies with over 20 source code files. As code depen-
dencies play a pivot role in the effectiveness of test impact
analysis, reducing code dependencies can unleash the full
potential of test impact analysis in reducing test overhead in
the CI setting. Practitioners can adopt common approaches
that can reduce code dependencies concerning test cases,
such as refactoring and mocking. Moreover, in this work,
we took a closer look at the dependencies among test cases
and concluded four dependency-related test smells. Such
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test smells negatively impact test quality and introduce
unneeded dependencies. We implemented and released a
prototype tool that detects these test smells. Future studies
and practitioners may leverage the tool to help maintain test
quality on a regular basis.

Needs and future research opportunities for proposing
specialized techniques that reduce code dependencies to
improve the effectiveness of test impact analysis. Our
findings highlight the need for more specialized techniques
that can reduce code dependencies in a more targeted
way. We find that the number of changed files only has
a moderate positive correlation with the percentage of the
impacted test cases. This indicates that some changed files
may have a larger impact than the others. For example, we
uncovered that the file HBaseTestingUtility in HBase has
direct and indirect dependencies with 760 test cases and
was frequently modified. Such files reduce the effectiveness
of test impact analysis and cause significant accumulated
test execution overhead. Future research on test impact
analysis should consider various properties of a changed
file, such as its change-proneness and the importance in the
dependency graph (e.g., the number of direct dependencies
may be small, but the propagation scope may be large). In
addition, such specialized techniques can be integrated in a
just-in-time fashion, which provides more prompt feedback
to developers. For example, techniques that detect and
reduce unneeded dependencies (such as our implemented
test smell detection) can be deployed to check every code
integration, and seeks for early resolution of unneeded
dependencies, before which may degrade the effectiveness
of test impact analysis. Moreover, future techniques may
examine the possibility of providing an interactive devel-
opment environment that allows developers to exclude files
that have high dependencies but the changes are less error-
prone.

Needs for revisiting and improving test case design. Our
manual analysis reveals that inheritance and utility meth-
ods are the two major causes of dependencies among test
cases (inheritance: 79.4%, utilities: 13.2%). While inheritance
and utilities are standard in improving code maintenance,
modularization, and usability, the necessity and negative
impacts of such code reuse in test cases should be revisited
more thoroughly by future work. Intuitively, inheritance
and sharing utility code may violate the test independence
assumption, and inheritance may even reduce test code
readability and increase test execution overhead [63]. Our
manually-uncovered dependency-related test smells con-
firm such intuition to some extent: Code reuse through
inheritance and utility may cause hard-to-maintain test
fixtures (Test Smell #3), unstable test environments (Test
Smell #2), and flaky tests (Test Smell #4). In short, our work
calls for future research efforts to revisit the current test
design and its impact on test quality, and the effectiveness
of test impact analysis. Moreover, automated approaches are
needed to refactor test cases for better design and improved
effectiveness of test impact analysis.

6 THREATS TO VALIDITY

External Validity. We conduct our study on eleven large-
scale open source systems in different domains. We find



that the overall findings hold in all the studied systems. Our
studied systems are all implemented in Java, so the results
may not be generalizable to systems in other programming
languages. Future studies should validate the generaliz-
ability of our findings in systems that are implemented
in other programming languages. Although the studied
systems have different levels of development activities, our
test impact analysis in CI is limited to a one-year period
and does not cover the very beginning of the system devel-
opment. Future studies can more thoroughly perform test
impact analysis and expand it to the entire development
lifecycle of software systems.

Construct Validity. In this paper, we use static analysis
to uncover the dependencies between test cases and other
source code files. During our manual study, we did not find
any false positives that are caused by our static analysis
approach. We choose static analysis over dynamic analy-
sis for recovering dependencies at the class-level because
of the three following reasons: 1) Prior studies [8, 28]
found that static test impact analysis have similar perfor-
mance compared to dynamic-based techniques, and class-
level dependency gives better results compared to method-
level dependency. 2) A large number of test cases suffer
from flakiness [64]. Flaky tests expose different behaviors
among multiple runs and may result in differences in code
coverage. 3) In each CI execution, there may exist many
test cases not being executed due to various reasons (e.g.,
failures of preceding test cases) [65, 66]. 4) Using static
analysis is shown to have high accuracy in identifying class
dependencies [67]. Future studies may use dynamic analysis
to re-evaluate our findings. We identify a file as a test case
if it contains calls to testing frameworks such as JUnit or
TestNG (i.e., contain @Test annotation). Although we did
not find any false positives during our manual study, some
of the identified test cases may be skipped by developers
during the build process. Future studies are needed to verify
the accuracy of our test identification approach. Note that,
older versions of the testing frameworks (e.g., JUnit 3) use
inheritance to define a test case (i.e., by calling extends
TestCase) and not @Test annotation. In such cases, our test
identification approach may not work properly. However,
the studied systems are using newer versions of the testing
frameworks, which use @Test annotation to define test cases.
Our study focuses on studying Java source code and test
cases. Although the majority of the studied systems are
written in Java, some of them may contain code that is
written in different programming languages. For example,
Flink contains 25% non-Java tests, Kafka contains 27% non-
Java tests, Hadoop contains 0.8% C++ tests, and Hbase
contains 4.2% JavaScript and 1.5% Ruby tests. After some
manual investigation of the build script and the executed
tests in the CI process, we find that these non-Java tests
are either excluded in the daily CI build, or are executed in
a separate CI job (i.e., does not affect the CI process of the
Java components). Future studies are needed to evaluate the
effect of the polyglot nature of a system on its test design
and execution.

Internal Validity. In this paper, we use static analysis to un-
cover the class dependencies. However, there may be some
limitations in the static analysis (e.g., difficult to analyze
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reflection) that cause inaccurate results. Even though we
did not find such cases in our manual study, future studies
should validate our findings on other systems.

7 CONCLUSION

To reduce test execution overhead, prior studies have pro-
posed and evaluated techniques such as test impact analysis
in the traditional software development settings. However,
the effectiveness of test impact analysis on reducing the
accumulative testing overhead remains unknown in the
continuous integration setting. In this paper, we first study
the effectiveness of static test impact analysis on 11 open-
source systems in the continuous testing setting. We ana-
lyzed one year of software development history. We found
that most test cases (around 50% or more) are impacted
in the daily test execution due to high code dependencies,
although the number of changed files is small. Motivated
by our finding, we further studied the code dependencies
between the source code files and test cases, and among test
cases. We found that most test cases cover the integrated
behavior of the system, and many test cases cover more
than 20 source code files. We also found that 18% of the
test cases have dependencies with other test cases. Finally,
we documented four dependency-related test smells that
we manually uncovered. In short, our study highlights the
needs and provides insights on reducing test execution
overheads and improving test design.
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