
A Study of Oracle Approximations in Testing Deep
Learning Libraries

Mahdi Nejadgholi, Jinqiu Yang
Department of Computer Science and Software Engineering

Concordia University, Montreal, Canada
{m nejadg, jinqiuy}@encs.concordia.ca

Abstract—Due to the increasing popularity of deep learning
(DL) applications, testing DL libraries is becoming more and
more important. Different from testing general software, for
which output is often asserted definitely (e.g., an output is
compared with an oracle for equality), testing deep learning
libraries often requires to perform oracle approximations, i.e.,
the output is allowed to be within a restricted range of the
oracle. However, oracle approximation practices have not been
studied in prior empirical work that focuses on traditional testing
practices. The prevalence, common practices, maintenance and
evolution challenges of oracle approximations remain unknown
in literature.

In this work, we study oracle approximation assertions imple-
mented to test four popular DL libraries. Our study shows that
there exists a non-negligible portion of assertions that leverage
oracle approximation in testing DL libraries. Also, we identify
the common sources of oracles on which oracle approximations
are being performed through a comprehensive manual study.
Moreover, we find that developers frequently modify code related
to oracle approximations, i.e., using a different approximation
API, modifying the oracle or the output from the code under
test, and using a different approximation threshold. Last, we
performed an in-depth study to understand the reasons behind
the evolution of oracle approximation assertions. Our findings
reveal important maintenance challenges that developers may
face when maintaining oracle approximation practices as code
evolves in DL libraries.

Index Terms—Software Quality Assurance, Software Testing,
Testing Deep Learning Libraries, Test Oracle

I. INTRODUCTION

Deep Learning (DL) techniques are widely applied to solve
important real-world problems, such as image and voice recog-
nition, and autonomous driving cars. Due to the complexity
and wide application of deep learning techniques, practitioners
build DL libraries to make DL techniques more accessible
to application developers. Modern DL applications heavily
depend on popular DL libraries, such as TensorFlow [1],
PyTorch [2], Theano [3] and Keras [4]. The quality assurance
practice of DL libraries is critical as it affects millions of
applications that are built on top of them.

However, there has been little attention to study the quality
assurance practice in DL libraries (i.e., the test cases written by
the developers of DL libraries). Such test cases guarantee the
correctness of the implementations in DL libraries. Insufficient
or low-quality test cases affect the quality of DL libraries.
Furthermore, the generated models from DL libraries can be
negatively impacted as well [5]. DL libraries, especially the

core algorithm module, heavily encode mathematical formulas
and arithmetic operations. The corresponding test cases in DL
libraries have unique properties, which are not studied by prior
empirical studies on test cases [6], [7].

Testing DL libraries often requires oracle approximations
(OA for short) instead of definitely asserting the equality
between the output from code under test (CUT) and the oracle.
Oracle approximations are needed in DL libraries for various
reasons. The output of the implementations in DL libraries,
may slightly vary in each test run (e.g., due to randomness).
For the cases where test oracles are floating numbers, it may
be hard for testers to precisely define the oracle in code.
Moreover, the output from CUT is allowed to be slightly
different from a computed oracle, such as when oracle is
other DL implementations (i.e., differential testing). Oracle
approximation is an essential testing practice adopted by DL
libraries in implementing assertions. Below is an example of
OA assertion from Keras. In the code snippet, p is the defined
oracle (line 2). The OA assertion (line 4) compares whether the
mean of a sample from a binomial distribution (i.e., rand, an
output from a Keras function) is close enough to the defined
oracle p. The value that defines the accepted range is named as
approximation threshold, i.e., 0.015 in the code snippet below.
1 def test_random_binomial(self):
2 p = 0.5
3 ...#rand gets the output from CUT, which is a Keras

function that generates a binomial distribution
4 assert np.abs(np.mean(rand) - p) < 0.015

Oracle approximation opens new challenges to developers.
First, developers need to select proper sources of oracles for
OA assertions. Improper test oracles may introduce unstable
test results, i.e., flaky tests. During code evolution, some
sources of test oracles may be more fragile than the others and
require more frequent updates (i.e., modifying test oracles or
the accepted range of oracles). Second, oracle approximations
require developers to properly decide the range of accepted
oracles. If the range is too loose, the test case would fail to
check the correctness of the implementation. If the range is
too tight, the test case would constantly fail and introduce
false warnings of failing tests to developers. Last, developers
may encounter challenges in the maintenance and evolution of
OA assertions. For instance, when testing the recurrent neural
network (rnn) component in TensorFlow, developers use the
output from Keras as an oracle, and implement the comparison
using oracle approximation. However, in accommodating a

recent Keras update, TensorFlow developers had to modify
the approximation threshold (i.e., loosening the range) to avoid
constant test failures.

Hence, to better address the challenges, it is important to un-
derstand the current OA practices in DL libraries. In this work,
we take an important first step to study OA practices in DL
libraries. In particular, we study the practice and evolution of
oracle approximations in four popular DL libraries. Our study
provides both quantitative and qualitative findings to conclude
common practices and highlight maintenance challenges that
can inspire future research to provide better tooling support
to developers in adopting and maintaining OA practices and
better utilize oracle approximations to guarantee the quality of
DL libraries.

We answer the following four research questions (RQs) by
studying four popular DL libraries (i.e., TensorFlow, PyTorch,
Theano and Keras).
RQ1: How many oracle approximation (OA) assertions are
implemented in testing deep learning libraries?

We studied the prevalence of OA assertions in testing
DL libraries. We investigated the commonly-used APIs that
developers use when implementing OA assertions. We find that
there exists a non-negligible portion of OA assertions (i.e., 5%
to 24%) in the four studied DL libraries.
RQ2: What are the common types of test oracles and thresh-
olds used in OA assertions?

We performed a manual study to identify the common
types of test oracles used in OA assertions. We derived a
systematic labeling system to guide this categorization process.
Our study shows that a diverse set of oracle types are used in
OA assertions. Developers often use computation-based oracles
(27%-72%), such as output from other DL libraries, or output
from similar functions in the same DL library. Moreover,
through analyzing the thresholds used, we find that developers
often need to specify thresholds used instead of using the
default ones provided by OA-assertion APIs.
RQ3: What are code changes developers perform on OA
assertions?

Our study shows that developers frequently modify OA
assertions because of code evolution. On average, 23% of the
modifications are about using a different OA-assertion API,
18.0% are about tightening or loosening the thresholds, and
58.9% are about modifying CUT or test oracles.
RQ4: Why developers perform changes on OA assertions?

We performed an in-depth analysis on all the OA-related
commits of one test module in TensorFlow, i.e., under ker-
nel test directory. In total, we analyzed 71 commits on OA
assertions in-depth, including analyzing the code changes
in the commits, analyzing other relevant code, reading the
commit messages and executing test cases before and after
the commits. Our findings reveal maintenance challenges
developers may face when managing OA assertions.
Paper Organization. Section II discusses the background of
oracle approximations. Section III describes the approaches
we follow to answer the four RQs. Section IV presents the
answers to the four RQs. Section V lists both internal and

external threats. Section VI surveys the related work. Finally,
Section VII concludes the paper.

II. BACKGROUND ON ORACLE APPROXIMATIONS

In this section, we describe the background on oracle
approximations, especially the reasons that OA assertions
are necessary in DL libraries. There exists a non-negligible
difference between the true value of a mathematical function
and the value that is calculated by the code implementation
of the mathematical function. We call such non-negligible
difference a numerical error. The implementation of DL
algorithms consists of encoding mathematical formulas and
arithmetic operations in programming languages. Therefore,
DL libraries inevitably contain such numerical errors. Such
numerical errors will be represented by oracle approximations
in test cases.

Atkinson and Han (Elementary numerical analysis [8])
categorize five common numerical errors in arithmetic compu-
tations. Below we describe the five types of numerical errors in
detail and their relevance to DL libraries: the first three types
of errors contribute to the analyzed oracle approximations in
this work and the last two types do not.

• Machine representation error. When representing floating
numbers in computer, there exists a difference between
the true value and the value represented by computers.
Due to the limited representation and use of rounding
techniques, this type of error widely exists in software
that contains floating-number computation. DL libraries
are no exception. Some of the OA assertions studied in
this paper are related to this type of error.

• Mathematical approximation error. Errors occur because
computers use estimation and approximation algorithms
in the process of calculating certain functions, such as
differential equations and trigonometric functions. Such
estimations introduce numerical errors. An example of
such approximation function in DL libraries is gradient
function over tensors. Our study includes the OA asser-
tions that are caused by this type of error.

• Defects in implementations. This source of error is re-
lated to developer error in the process of calculation.
Developers may introduce implementation defects in DL
libraries, which may lead to severe numerical errors in
any generated DL models. The OA assertions in our study
could be related to this type of error.

• Modeling error. This type of error occurs when there
are uncertainties in the modeled mathematical relation
of a phenomenon. For instance, in DL libraries, there
might be some unspecified implementation details in the
distribution definition of the learning algorithms. This
type of error does not contribute to our studied OA
assertions.

• Physical measurement error. There might exist a differ-
ence between the physical reality of a phenomenon and
the measured value. Such errors are typically introduced
in data collection process and do not exist in DL libraries.

Therefore, the analyzed oracle approximations in this
work are not related to this type of error.

III. METHODOLOGY

In this section, we provide details on the studied four DL
libraries and describe the methodology we used to conduct the
study on oracle approximations to answer the following four
research questions (RQs):
RQ1: How many oracle approximation (OA) assertions are
implemented in testing deep learning libraries?
RQ2: What are the common types of test oracles and thresh-
olds used in OA assertions?
RQ3: What are code changes developers perform on OA
assertions?
RQ4: Why developers perform changes on OA assertions?

A. Studied Systems

TABLE I
STATISTICS ON THE STUDIED DEEP LEARNING LIBRARIES. KERAS IS A

PYTHON LIBRARY. THERE IS CODE OF OTHER LANGUAGES (E.G., C++) IN
TENSORFLOW, THEANO AND PYTORCH.

System Version Release Date KLOC Studied
(Python) Dev. Period

TensorFlow 1.12.0 09/2018 2,003 11/2015 – 09/2018
Theano 1.0.3 09/2018 667 01/2008 – 09/2018
PyTorch 1.0.0 12/2018 217 01/2012 – 12/2018
Keras 2.2.4 10/2018 65 03/2015 – 10/2018

In total, we include four deep learning libraries in the study,
i.e., TensorFlow [1], Theano [3], PyTorch [2] and Keras [4].
The selected four systems are commonly cited as the most
popular DL libraries, e.g., the most starred and forked DL
projects on GitHub and most cited framework on ArXiv and
Medium.1 Table I shows the statistics of the studied DL
libraries. For RQ1 and RQ2, we analyzed a recent stable
version of each deep learning library (see “Version” in Table I).
For RQ3 and RQ4 (i.e., two RQs about code evolution), we
analyzed a development period for each library (see “Studied
Dev. Period”) in Table I). The analyzed development history
starts from the first commit of each studied DL library.

Among the four analyzed systems, Keras is the only project
that is in pure Python, because there is no computational
core in Keras structure. However, TensorFlow, PyTorch and
Theano have a C/C++ core and Python API as their default
interface 2. In these three frameworks, there is a non-negligible
portion of non-python core code, i.e., 1,290 KLOC C++ code
in TensorFlow and 423 KLOC C++ code in PyTorch and
27 KLOC C code in Theano. Our study focuses on Python
test cases (i.e., test cases written in Python) and does not
include C/C++ test cases. However our study actually includes
a comprehensive set of test cases that test non-python code.

1For more information on Metrics and results of Deep Learning framework
popularity analysis please read https://towardsdatascience.com/deep-learning-
framework-power-scores-2018-23607ddf297a

2For TensorFlow there are other API in other languages such as Java and
Go but we do not cover them in this study.

Based on TensorFlow3 and PyTorch documentation4, Python
has been mentioned as the preferable API for development
and testing. In TensorFlow and PyTorch, it remains as a
common practice to use Python wrappers to wrap C++ code
(e.g., the computation core in TensorFlow [9]), and further
test the Python wrappers using Python test cases. Note that
wrapping C/C++ code in Python, there may or may not be
new functionalities (e.g., computation, data processing) being
added in the Python code.

In short, although we focus on test cases written in Python,
our study actually includes test code for testing both Python
and C++ code in TensorFlow and PyTorch since their C++
code is tested by Python test cases. In the future, we plan to
expand the study of oracle approximations to other program-
ming languages (e.g., Java and C++) by analyzing systems
such as Microsoft CNTK, Deeplearning4j and Caffe.

B. Identifying OA Assertions (RQ1 and RQ2)

First, we identify the assertion methods that developers use
in the studied libraries to express OA assertions. Then we ex-
tract OA assertions by finding the usages of the identified OA-
assertion methods. In particular, we parse every test method in
Python into an abstract syntax tree (AST), iterate the AST and
identify the assertion statements that use one of the identified
OA-assertion methods.

In Python, assertions are expressed in two ways: 1) assert
keyword, which is then followed by a boolean expression; and
2) using customized assertion APIs, e.g., internally defined
by each Python project, the Python unittest built-in functions,
and assertion APIs provided by NumPy, i.e., a commonly-
used library in Python that supports computation on arrays
and matrices. Inherited from the above-mentioned two ways,
oracle approximation assertions can be expressed using 1)
assert keyword, which is followed by a boolean expression
that performs relational operations, particularly < and <=,
and 2) assertion functions that allow the expression of oracle
approximations, i.e., OA assertion APIs. Note that for 1), we do
not include notations such as > and >= because we find that
these greater notations are often about about inequality instead
of approximations. Differently we find that < and <= are often
used to express oracle approximations such as absolute(oracle
- output) < 0.05.

Our procedure of identifying OA-assertion APIs for each
studied library combines reading the official documentation
of the libraries (i.e., TensorFlow, PyTorch, Theano and Keras)
to initiate regular expression queries such as assert*close,
assert*almost, searching the initiated queries in each codebase,
and expanding the list of OA-assertion APIs by examining
the search results. The steps in our procedure is performed

3In documentation of TensorFlow, it has been mentioned that for
testing new customized operation, ”We usually do this [operation test-
ing] in Python for convenience”. Therefore, testing the computational
core, which is in C++, is actually implemented in Python test cases.
https://www.tensorflow.org/guide/extend/op

4In PyTorch’s README it has been explicitly mentioned that ”PyTorch
is not a Python binding into a monolithic C++ framework. It is built to be
deeply integrated into Python”.

iteratively until we are not able to find any new OA-assertion
APIs in one studied library. The two authors of this work
confirmed that the resulting list of APIs indeed expresses the
oracle approximations. Our manual analysis in RQ2 confirmed
that the approach and heuristics we adapt to identify OA
assertions are accurate: more than 99% of the identified OA
assertions are true OA assertions.

C. Identifying Oracle Type in Oracle Approximation Asser-
tions (RQ2)

Test oracles are defined differently, e.g., a defined oracle, or
output from an external library using differential testing [10].
Understanding the commonly used oracle types in oracle
approximation assertions would inspire future research to
design better tooling support when oracle approximations are
needed in assertions. For example, differential testing may use
oracle approximations to allow a slight difference between one
function from TensorFlow and a similar function from Keras.
Developers would also need to specify the maximum value of
such slight difference. If the maximum allowance is set too
large, then the test case is weak in detecting regressions. If
the maximum allowance is set too small, then it may require
frequent changes as code evolves.

We manually examined the oracle type for every oracle
approximation assertion in a statistically significant sample
from each of the studied system. In particular, we analyzed
348 OA assertions from TensorFlow, 219 from PyTorch, 281
from Theano, and 180 from Keras. All the samples are taken
with a confidence level of 95% and a confidence interval of
5%.

To derive a systematic labeling, two of the authors indepen-
dently perform analysis on a set of 100 OA assertions from
TensorFlow and take notes about oracle types. The two authors
then discussed and agreed on a systematic labeling that con-
sists of five main categories: manually defined (D), differential
testing (DT), a naive implementation (NI), a relevant internal
function (RI), and the same code under test (SCUT). Examples
of the five categories will be provided when we present the
results in Section IV-B.

We use the following approach to perform the systematic
labeling process. Given one oracle approximation assertion,
the following steps are used to label the oracle type:

1) Identify the argument that represents a test oracle.
For all the approximation APIs in Table II except for the
category of assert and relational operations, developers
are expected to place the output from the code under test
(CUT) as the first argument and the test oracle as the
second argument. However in practice, developers may
switch the placement of the two arguments. Therefore,
we need to decide which argument is representing the
test oracle by identifying the argument represents the
output from CUT by understanding the test code.

2) Decide if the oracle is defined or through computation.
If the oracle is defined or assigned with numerical values
(e.g., np.abs(np.mean(rand)- 0.5) < 0.015 where 0.5
is the defined oracle), we labeled the oracle type as a

defined oracle (D). Developers may perform computation
on the defined numerical values (e.g., calculating the
mean of a data set) and use the result as a test oracle
instead of using the raw values. For such cases, we still
labeled them as D oracle type.

3) Given an computation oracle, decide whether the
computation code is internal or external.
If the oracle is output from an external library (e.g.,
using NumPy’s result when testing TensorFlow), we
labeled the oracle type as differential testing (DT).

4) Classify the oracle type into one of the three types (i.e.,
NI, RI, SCUT) when the computation code is internal.
Developers may provide a naive implementation (i.e.
often in the test code) and use the result from the
naive implementation as a test oracle. The naive im-
plementation (NI) is similar to the code under test in
terms of functionality but may lack of complexity and
provide limited accuracy. Oracles of relevant internal
code (RI) refer to the oracles that are computed by a
relevant function in the same codebase (e.g. comparing
the output from two methods in TensorFlow). We also
find assertions in which developers use the output of the
same code under test (SCUT) as the test oracle. Among
the SCUT cases, when used as test oracles, the same
code under test may or may not be invoked with the
exactly same inputs and configurations. We also label
SCUT cases with a sub-category label based on this
distinction.

The systematic labeling is comprehensive as it covers whether
the oracle is defined (D) or through computation (NI, DT, RI,
and SCUT). Among the oracles from computation, the labeling
covers all the cases where the computation is from: internal
(NI, RI, SCUT) and external (DT).

Upon agreeing on the systematic labeling, the two authors
independently label the oracle types for the randomly sampled
OA assertions and resolved the disagreements through discus-
sions. The two authors reached a Cohen’s kappa of 0.77 in
this systematic labeling process, which is a substantial-level
of agreement.

D. Categorizing the modifications on oracle approximation
assertions (RQ3)

In RQ3, we investigate what are the changes developers
perform on OA assertions and the distribution of such code
changes. We developed an automated solution to answer RQ3.
The tool firstly extracts all the changes of OA from commit
history. Each OA modification consists a pair of deleted and
added lines of code, both of which are on OA assertions. After
extracting the modifications, the tool determines the category
of each modification.

To extract OA modifications (i.e., a pair of added and
deleted lines), given one commit, we utilized the Abstract
Syntax Trees (ASTs) that are generated from statements that
differ in pre- and post-commit versions. Tokens in OA asser-
tions are aligned for equality comparison and the top-matched
OA statements are extracted as one OA modification.

In the second step, the tool decides the category of OA
modification by first deciding whether cosmetic or non-
cosmetic modifications, then further dividing the non-cosmetic
modifications into three categories, i.e., API modification, or-
acle/CUT modification, and threshold modification. Cosmetic
modifications are changes that only contain tabs, spaces and
newlines. We identify cosmetic changes by asserting whether
one added and one deleted lines are identical after removing
spaces, tabs and newlines. For non-cosmetic modifications,
the tool uses the syntactic position of the modified token in
AST to decide whether the modification is to change API,
oracle/CUT, or threshold. For API modification, the arguments
of the added and deleted lines are the same but the assertion
API has been changed. For oracle/CUT modification, the first
two arguments of an OA assertion are modified. Due to the
fact that developers might misplace oracle and CUT, we are
not able to precisely distinguish the oracle change from CUT
change automatically. For threshold modification, developers
may change the threshold used to control the comparison
between the oracle and the output from CUT, i.e., tightening
the comparison by using a smaller threshold, or loosening the
comparison by using a larger threshold.

E. Understanding the reasons behind OA assertions modifi-
cations through manual analysis (RQ4)

Understanding the context and reasons that developers per-
form modifications on OA assertions will provide insights to
provide better tooling support to developers in maintenance
activities.

To answer this RQ, we performed an in-depth analysis on
all the commits on one computation component in TensorFlow
(i.e., the kernel tests directory). In particular, we categorized
the commits based on the effects of code changes and reasons
behind. The kernel tests directory in TensorFlow contains all
the test cases that test tensor operation functions 5. Focusing on
one directory allows us to conduct an in-depth analysis since
such analysis requires extensive understanding and knowledge
on the test suites and source code in the study. We leveraged
the labels of RQ3 in the first manual study of RQ4. The tool we
developed for answering RQ3 can label a commit as a cosmetic
or a non-cosmetic change. We examined the cosmetic changes
one-by-one to make sure all are indeed cosmetic changes. For
non-cosmetic changes, different from RQ3 labels, we further
analyze the effect and possible reasons behind the change.
We combined reading commit messages, source code and test
file changes to understand the nature and root causes of the
commits. Furthermore, we reproduced some commits of each
category (i.e., executing test cases in the versions of pre-
and post-commit) to better understand the rationale of code
changes performed by developers.

IV. RESULTS

This section presents the answers to the four research
questions.

5More information about operations in TensorFlow can be found at
https://www.tensorflow.org/api docs/python/tf/Operation.

A. RQ1: How many oracle approximation (OA) assertions are
implemented in testing deep learning libraries?

We followed the procedure that is described in Section III-B
to identify the oracle approximation assertion APIs used in
each of the studied DL library (see Table II). Then, we
expanded the API list to include all the assertion APIs used in
each DL library. Last, we counted the number of all assertions
and the number of OA assertions for each DL library.

Table II presents the OA-assertion APIs used in each studied
DL library, the number of each API usage and also the source
of the API (i.e., in which library the API is defined). We cat-
egorize the OA-assertion APIs into four main categories. The
APIs of “absolute and relative tolerance” use both absolute and
relative thresholds to express the accepted range of oracles.
Whether the assertions using these APIs fail or not depends
on the result of assert abs(CUT - oracle) < atol +

rtol * abs(oracle), in which CUT is the output from code
under test, atol is absolute tolerance, and rtol is relative
tolerance. The second category of OA APIs uses absolute
tolerance only, for which the following condition is used to
determine the result assert abs(CUT - oracle) < atol.
The third category of OA-assertion APIs use rounding to assert
the closeness between CUT and oracle based on assert

abs(oracle - CUT) < 1.5 * 10**(-decimal). The ar-
gument decimal is used to specify the number of significant
digits in CUT and test oracle. The last category of APIs (i.e.,
“error bounding“) do not directly compare CUT and oracle,
but first calculates the difference between the two, and then
asserts whether the difference (i.e., error) is smaller than a
threshold such as assert error < threshold.

Our study shows that the OA-assertion APIs from Numpy
are commonly used across the studied DL libraries. Moreover,
in each DL library, developers may define library-specific APIs
to express OA assertions (e.g., 80% of all the OA assertions in
TensorFlow). Both TensorFlow and PyTorch use the Python
built-in assertion APIs that are defined in unittest.TestCase
(16% in TensorFlow and 34% in PyTorch).

Table III shows the results of RQ1. In particular, we show
the number of OA assertions, the number of all assertions, the
number of test cases with at least one oracle approximation
assertion, and the number of all test cases. In summary, there
exists a non-negligible portion of OA assertions in each studied
DL library, ranging from 5% to 25%. If considering the test
cases, 10% to 67% of all the test cases contain at least one
oracle approximation assertion.

�

�

�

�

We find that there exists a non-negligible portion (5%-
25%) of OA assertions in DL libraries. Assertion APIs
from Numpy are commonly used in TensorFlow, PyTorch,
Theano and Keras to express OA assertions. Developers
may heavily use customized functions to express oracle
approximation assertion (i.e., 80% in TensorFlow).

TABLE II
APIS THAT EXPRESS ORACLE APPROXIMATIONS IN EACH OF THE STUDIED DL LIBRARIES.

Category Source Methods TensorFlow PyTorch Theano Keras

Absolute and
Relative Tolerence

Numpy assert allclose(actual, desired, rtol, atol) 74 119 598 231
Numpy assert allclose(actual, desired, rtol, atol) 2 9 358 29
Numpy assertTrue(isclose(actual, desired, rtol, atol)) 8 54 40 0
Keras assert list pairwise(A, atol) 14 0 0 24
TensorFlow assertAllClose(actual, desired, rtol, atol) 2550 0 0 0
TensorFlow assertAllCloseAccordingToType(actual, desired, rtol, atol) 267 0 0 0

Absolute Tolerence
TensorFlow assertNear(actual, desired, atol) 48 0 0 0
TensorFlow assertArrayNear(actual, desired, atol) 32 0 0 0
TensorFlow assertNDArrayNear(actual, desired, atol) 1 0 0 0

Rounding Tolerance

unittest assertAlmostEqual(actual, desired, decimal) 300 88 2 0
unittest assertAlmostEquals(actual, desired, decimal) 0 2 0 0
Numpy assert array almost equal(actual, desired, decimal) 0 39 16 5
Numpy assert almost equal(actual, desired, decimal) 1 76 0 5

Error Bounding

Python assert error < threshold 19 36 33 44
unittest assertTrue(A < B) 16 9 0 0
unittest assertLess(A,B) 230 35 0 0
unittest assertLessEqual(A,B) 24 38 0 0
Numpy assert array less(A,B) 3 2 0 0
TensorFlow assertAllLessEqual(A,B) 0 0 0 0

TABLE III
STATISTICS OF OA ASSERTIONS IN THE STUDIED DL LIBRARIES.

Subject Assertions OA Assertions (perc.) Test Cases Test Cases
w/ OA (perc.)

TensorFlow 21,776 3589 (16%) 2,858 2,018 (70%)
PyTorch 10,049 507 (5%) 3,555 313 (8%)
Theano 5,995 1,047 (17%) 1,972 592 (30%)
Keras 1,351 338 (25%) 582 161 (28%)

B. RQ2: What are the common types of test oracles and
thresholds used in OA assertions?

We manually analyzed 1,070 OA assertions from the studied
DL libraries, i.e., TensorFlow, PyTroch, Theano and Keras.
The 1,070 instances consist of random samples from all the OA
assertions in the four studied libraries. Each random sample
from each library achieves a confidence level of 95% and
a confidence interval of 5%. We labeled the oracle type in
each oracle approximation assertion following the systematic
labeling that is described in Section III-C. Also, we recorded
whether threshold that controls the approximation assertion is
either default, which means developers do not specify a certain
threshold and use the default value in the assertion API, or
customized, or depend, which means the exact value used as
the threshold will be decided during runtime (i.e., depending
on data types or hardware specifications).

Table IV shows the results from our manual labeling on
oracle types and approximation thresholds. The systematic
labeling contains five main categories.
Defined oracle (D). Developers often define the oracle (e.g.,
a floating point number) and assign the defined to a variable
that is then used in assertions. In some cases, developers may
perform simple calculations on the defined oracles, and such

calculations are irrelevant to the code under test. For such
cases, we also label them as defined oracle type. We show
an example of defined oracle from TensorFlow below. In the
example below, p is assigned with an array (i.e., using NumPy,
line 3) and is compared with the output from code under test
in line 5. Our study shows that 26%-73% of OA assertions use
defined test oracles.
1 @test_util.run_in_graph_and_eager_modes
2 def testLogits(self):
3 p = np.array([0.01, 0.2, 0.5, 0.7, .99], dtype=np.

float32)
4 ...
5 self.assertAllClose(p, self.evaluate(new_p), rtol=1e-5,

atol=0.)

Naive implementation (NI). The oracles are computed by
a naive implementation, which is often defined in test code.
The naive implementation provides a similar functionality with
the code under test. What differentiates NI from D is that
defined oracles may involve computation, but the computation
is irrelevant to the code under test. In the code snippet below,
the test oracle kl expected is computed through the simple
implementation (line 5 to line 9).
1 kl = kullback_leibler.kl_divergence(a, b)
2 kl_val = sess.run(kl)
3
4 #provide a naive implementation to get kl_expected
5 a_logits = np.random.randn(batch_size, categories)
6 b_logits = np.random.randn(batch_size, categories)
7 prob_a = np_softmax(a_logits)
8 prob_b = np_softmax(b_logits)
9 kl_expected = np.sum(prob_a * (np.log(prob_a) - np.log(

prob_b)), axis=-1)
10
11 self.assertAllClose(kl_val, kl_expected)

Differential testing (DT). DT is commonly used to test
systems when there exist a variety of implementations, such

TABLE IV
ORACLE TYPES AND THRESHOLDS USED IN THE OA ASSERTIONS OF THE STUDIED DL LIBRARIES.

Subject Defined Naive Differential Relevant Internal Same Code Under Test (SCUT) Threshold
Oracle (D) Impl. (NI) Testing (DT) Function (RI) Same Input Different Inputs default customized depend

TensorFlow 257 (73%) 23 (7%) 19 (5%) 14 (4%) 16 (5%) 5 (1%) 107 (31%) 226(65%) 15(4%)
PyTorch 93 (42%) 36 (16%) 24 (11%) 18 (8%) 2 (1%) 34 (16%) 42 (19%) 146(67%) 18(8%)
Theano 75 (27%) 44 (16%) 76 (27%) 55 (20%) 6 (2%) 11 (4%) 242 (86%) 18 (6%) 6 (2%)
Keras 72 (40%) 12 (7%) 14 (8%) 21 (12%) 27 (15%) 23 (13%) 68 (38%) 102 (57%) 10 (6%)

as compilers [11]. In the DT cases of testing DL libraries,
the oracles are computed from similar code in other DL
libraries. The code snippet below shows an example of DT
that compares the output from Theano’s tensordot function
(line 1) with numpy.tensordot (line 5).
1 c = tensordot(avec, bmat, axes)
2 f2 = inplace_func([avec, bmat], c)
3 aval = rand(5)
4 bval = rand(8, 5)
5 utt.assert_allclose(np.tensordot(aval, bval, axes), f2(

aval, bval))

We find that 5%-27% of OA assertions utilize differential
testing, i.e., using outputs of other libraries as test oracles.
Particularly in Theano, there exists a significant portion (27%)
of OA assertions that use differential testing oracles, and the
percentage is much higher than the other DL libraries. The
relevancies inferred from differential testing practices can be
used to improve test cases for both libraries invovled.
Relevant internal function (RI). Different from DT, RI refers
to the cases where the oracles are produced by relevant func-
tions in the same codebase under test. The relevant functions,
when invoked with certain arguments, can be used to generate
the oracles that are then compared with the code under test.
Below is an example of RI category from TensorFlow. In
particular, y1 (line 1) and y2 (line 2) are computed from two
relevant functions in Tensorflow and then be compared for
similarity (line 4).
1 y1 = nn_ops.atrous_conv2d(y1, f, rate, padding=padding

)
2 y2 = nn_ops.conv2d(y2, f, strides=[1, 1, 1, 1],

padding=padding)
3 y2 = array_ops.batch_to_space(y2, crops=pad,

block_size=rate)
4 self.assertAllClose(y1.eval(), y2.eval(), rtol=1e-2,

atol=1e-2)

In three of the four studied DL libraries, RI does not take
a significant portion, i.e., 4%–12% of all OA assertions.
Differently in Theano, RI is a much larger portion, i.e., 20%.
Same code under test (SCUT). In some cases, test oracles
may be produced by invoking the same code under test, with
either the same inputs or different inputs. In DL libraries,
the possible reasons include metamorphic testing (i.e., two
different inputs may yield the same result from the same code
under test), or testing the randomness (i.e., two runs of the
same under test with the same input may produce slightly
different results). Thus, we derive two sub-categories under
the category of SCUT based on whether the two sets of inputs
(i.e., arguments) are the same or not. In total, we labeled
6%-27% of the OA assertions with the oracle type of SCUT.
Among them, 41% use the same input to generate the oracles

and 59% use different inputs to generate the oracles. We have
found that in the SCUT cases with the same input, the purpose
of the developer is to assert whether an additional operation
on CUT can cause non-tolerable error or not. Differently, in
SCUT cases with different inputs, the concept is analogous
to metamorphic testing. Such information potentially can be
leveraged to improve automated test generation techniques in
the future, e.g., using the inferred metamorphic relations.
1 def test_statefulness_GRU(self):
2 model = keras.models.Sequential()
3 ...#right_padded_input is being modified
4 out6 = model.predict(left_padded_input)
5 ...#left_padded_input is being modified
6 out7 = model.predict(right_padded_input)
7 np.testing.assert_allclose(out7, out6, atol=1e-5)

Table IV also shows how many of the analyzed cases use
default, runtime, and customized thresholds to restrict the
approximations. Our study shows that developers often need to
specify a proper threshold when using oracle approximations,
i.e., ranging from 6% to 67% in the studied systems. For 2% to
8% studied cases, developers need to use different thresholds
in the same oracle approximation assertion based on runtime
behaviors, such as different data types (e.g., float16, float32
etc.), and whether CPU or GPU is configured in the test
environment.�

�

	

Our study shows that there exists a diverse set of different
test oracles and thresholds used in OA assertions. Our
study also shows that there exists a significantly por-
tion (27%-72%) of test oracles are through computation.
This indicates that applying automated non-oracle testing
techniques (e.g., metamorphic testing, differential testing)
should carefully consider and utilize oracle approximation
practices.

C. RQ3: What are code changes developers perform on OA
assertions?

We developed an automated solution to answer this RQ in
Section III-D. In particular, the approach firstly determines
whether a commit is to add OA assertions, to delete the
OA assertions, or to modify the OA assertions. Among the
modifications, the approach classifies whether modifications
is on OA-assertion API, the parameters (CUT/oracle), or the
threshold.

Table V shows the distribution of oracle approximation
assertion commits on the above-mentioned categories. 7%-
20% of all the commits involve changes at least one oracle
approximation assertion. The remaining rows show the number

TABLE V
BREAKDOWN OF CODE CHANGES ON OA ASSERTIONS

TensorFlow PyTorch Theano Keras
Total # of commits 6,915 4,427 10,350 1,283
Total # of commit (OA) 1,062 (15%) 344 (8%) 776 (7%) 254 (20%)

The numbers below show the numbers of changes in each category.
Total # of changes (OA) 3,168 1,022 2,801 1,169
of OA additions 870 (27%) 765 (75%) 1229 (44%) 526 (45%)
of OA deletions 503 (16%) 115 (11%) 224 (8%) 178 (15%)
of cosmetic modi. 863 (27%) 61 (6%) 397 (14%) 179 (15%)
of non-cosmetic modi. 932 (29%) 80 (8%) 951 (34%) 286 (24%)
... # of API modi. 202 10 248 58
... # of para. modi. 522 55 639 109
... # of thres. modi. 208 15 64 119

of changes in each category. One commit may consist of
multiple changes. Among all the changes on OA assertions,
27%-75% are adding new OA assertions, e.g., increasing
the test coverage, or modifying non-OA assertions to OA
assertions. 8%-16% are deleting existing OA assertions. The
remaining changes (14%-56%) are OA modifications. Among
the OA modifications, after removing cosmetic modifications
(i.e., 6%-27%), the non-cosmetic modifications are further di-
vided into three categories: API modification (13%-26% on all
non-cosmetic changes), parameter (CUT/oracle) modifications
(38%-69%), and threshold modifications (7%-42%).

Figure 1 shows three examples of the three detailed modifi-
cation categories. The first code snippet is an example of API
modification from PyTorch. In this example, developers modi-
fied the OA-assertion API, i.e., using assertLess instead of as-
sertLessEqual while keeping the other arguments unchanged.
The second code snippet is from Keras, in which both of the
CUT and oracle are modified. In this case, developers changed
used a specific property of CUT and oracle to compare for
faster test execution. The last code snippet is from TensorFlow,
and the thresholds (i.e., both the absolute tolerance and relative
tolerance) are modified in order to reduce the flakiness of this
assertion. With the smaller thresholds, i.e., before this change,
the assertion is more likely to fail. 6

1 - self.assertLessEqual(fn().data[0], initial_value)
2 + self.assertLess(fn().data[0], initial_value)

An example of API modification from PyTorch

1 - assert_allclose(out, out2, atol=1e-05)
2 + assert_allclose(np.squeeze(out), np.squeeze(out2), atol

=1e-05)

An example of CUT/oracle modification from Keras

1 - self.assertAllClose(sample_mean_, analytic_mean, atol
=0., rtol=0.06)

2 + self.assertAllClose(sample_mean_, analytic_mean, atol
=0.04, rtol=0.)

An example of threshold modification from TensorFlow

Fig. 1. Examples of the three modification categories (API, CUT/oracle, and
threshold).

6According to the commit message, the assertion is flaky and developers
decided to loosen the thresholds to avoid any failures.

�

�

�

�

We find that developers frequently change OA assertions,
i.e., 7%-20% of all the commits. Among the code changes
on OA assertions, developers often perform non-cosmetic
modifications on OA assertions, i.e., up to 34% of all
changes. Developers can benefit from future tooling sup-
port to help them better manage code evolution on OA
assertions.

D. RQ4: Why developers perform changes on OA assertions?

In RQ3, we show that many code changes on OA assertions
are to modify oracle or threshold. In RQ4, we analyzed all the
commits on oracle approximations in one computation module
in TensorFlow to understand the reasons behind those changes.

Table VI shows the results of our manual study on OA-
related commits in kernel tests directory in TensorFlow. Be-
low we describe detailed analysis of each category and provide
some examples.

TABLE VI
THE REASONS BEHIND CODE CHANGES OF TEST CASES IN KERNEL TESTS

DIRECTORY OF TENSORFLOW

Reasons of Modifications Commits Changes

Refactoring 8 46
Increasing test coverage 5 123
Threshold loosening cases 10 34
Threshold tightening cases 1 1
Data-type related modifications 14 26
Hardware related modifications 3 5
Rollbacks 4 25
Unknown 14 18

Refactoring. Developers may perform refactoring to improve
test cases, e.g., reducing the test execution time without
sacrificing coverage. We call such cases refactoring as they
do not change the structure of test cases significantly. Below
is a refactoring example from TensorFlow. The assertion (line
4) is modified following the change on a variable assignment
(line 2). In this case, developers change the size of the CUT
variable (i.e., from 1024 to 128) to ”reduce the cost” of
running this test. This refactoring change does not affect
the threshold. Therefore, although the oracle is changed, the
threshold remains unmodified.

1 - v = 2. * (array_ops.zeros([1024, 1024]) + x)
2 + v = 2. * (array_ops.zeros([128, 128]) + x)
3 ...# yval is computed from v
4 - self.assertAllClose(4 * (i - 1) * (i - 1) * 128, yval

, rtol=1e-4)
5 + self.assertAllClose(4 * (i - 1) * (i - 1) * 1024,

yval, rtol=1e-4)

Increasing test coverage. In the development of DL libraries,
developers may add new code to provide new functionalities
or improve the current features. Correspondingly, test cases
should be updated to test the new code. Developers may
modify existing test cases to test new code by increasing the
test coverage instead of adding brand new test cases.

Threshold modification. We describe the categories under
“threshold modifications” in detail. We find that There are
four reasons that developers need to perform threshold modi-
fications.

• Hardware-related modifications. The output from CUT
may produce different results depending on whether GPU
or CPU is configured. Often developers implement the
two test scenarios in one test method and use different
thresholds to differentiate the comparison with the same
oracle. For example, as code evolves, developers may
add GPU support to certain functions, the corresponding
test cases are subject to change as well. In total, we
find that in 3 commits, developers change threshold to
accommodate testing in GPU environment. Below is an
example of hardware-related threshold modification. The
commit is from TensorFlow and the commit message is
“ Implement GPU version of tf.determinant”. Developers
modified the configuration of the test case to include
testing GPU (line 8). Correspondingly, the invoked test
method compareDeterminantBase (line 2) would need
to modify the threshold to accommodate such change.
In this example, developers loosened the threshold (i.e.,
from the default value 1e-6 to 5e-5).
1 Message : Implement GPU version of tf.determinant.
2 def _compareDeterminantBase(...):
3 - self.assertAllClose(np_ans, out)
4 + self.assertAllClose(np_ans, out, atol=5e-5)
5
6 def _compareDeterminant(...):
7 - with self.test_session():
8 + with self.test_session(use_gpu=True):
9 self._compareDeterminantBase(matrix_x,

10 linalg_ops.matrix_determinant(matrix_x))

• Data representation related modifications. Computation
on floating-numbers suffers from the imprecision of rep-
resenting floating-numbers in machines. Therefore, the
output from CUT in DL libraries may return slightly
different values in the same test method because of
different data representations, e.g., float16, float32, etc.
In the code example below, developers changed the
assertAllClose to assertAllCloseAccordingToType in test
UnsortedSegmentSumTest. The latter OA-assertion API
has different default threshold values for different data
types. So developers use this OA-assertion API to express
different levels of approximation for different data types.
1 - self.assertAllClose(np_ans, tf_ans)
2 + self.assertAllCloseAccordingToType
3 (np_ans, tf_ans)

We reproduced this commit, logged the value of tf_ans,
executed the test case 10 times, and concluded that
UnsortedSegmentSum indeed generates different values
for different data types.

• Loosening the threshold. In total we reproduced and
analyzed 10 commits in this category. When one OA-
assertion fails, developers may choose to relax the thresh-
old. The reason was reflected in many commit messages
that contains words such as ”flaky test” or ”flakiness”. For
instance, the commit message of the code change below

is “Increase tolerance in flaky multinomial test, but there
is a problem with multinomial distribution test and their
solution is to make the function less sensitive to system
error”. To void such flaky tests, developers may loosen
the threshold, i.e., atol is changed from 0 to 0.01 in the
code snippet below.
1 - self.assertAllClose(sample_mean_, analytic_mean,

atol=0., rtol=0.01)
2 ...
3 + self.assertAllClose(sample_mean_, analytic_mean,

atol=0.01, rtol=0.01)

Below we show another example in the category of
loosening threshold. Developers modified totally 15 in-
vocations of assertAllClose and used loosened thresholds
to eliminate the ”flakiness” of the tests. The commit
message is ”Reduce flakiness of tf.distributions tests by
tweaking the tolerances.”.
1 - self.assertAllClose(sample_mean_,

analytic_mean, atol=0., rtol=0.06)
2 - self.assertAllClose(sample_cov_, analytic_cov,

atol=0., rtol=0.07)
3 - self.assertAllClose(sample_var_, analytic_var,

atol=0., rtol=0.07)
4 - self.assertAllClose(sample_stddev_,

analytic_stddev, atol=0., rtol=0.02)
5
6 + self.assertAllClose(sample_mean_,

analytic_mean, atol=0.04, rtol=0.)
7 + self.assertAllClose(sample_cov_, analytic_cov,

atol=0.05, rtol=0.)
8 + self.assertAllClose(sample_var_, analytic_var,

atol=0.05, rtol=0.)
9 + self.assertAllClose(sample_stddev_,

analytic_stddev, atol=0.02, rtol=0.)

We reproduced the commit above and logged rele-
vant values to show the flakiness before the com-
mit, and also how the flakiness is reduced after the
commit. There are four OA assertions in the code
example above. The OA-assertion API assertAllClose
uses both relative and absolute tolerances to formu-
late the accepted difference between an output of CUT
and an oracle. To visualize how close the OA asser-
tions are to test failures, we formulated safe margin
function as safe_margin(OA) = (atol + rtol

* oracle) - abs(CUT - oracle), where atol
and rtol are respectively absolute and relative tolerance,
and CUT and oracle represent the output from the
CUT and test oracle. If the safe margin value becomes
smaller than zero, then there will be an unacceptable
difference between CUT and oracle and therefore, the
assertion will fail.
Figure 2 visualizes the histogram of the safe margin
values in 10 runs of the four invocations of assertAll-
Close. The figure includes two sets of data: one for the
pre-commit version (red) and one for the post-commit
version (green). The unsafe margins are highlighted in
gray, which means that if any of the red or green
lines falls into the gray area, the corresponding assertion
would fail. Figure 2 shows that after the commit, i.e.,
loosening the threshold, two properties of the safe margin

Fig. 2. The safe margins of the four OA assertions in two versions: before
(red) and after (green) the threshold modification commit. The gray area is
where the test would fail if any safe margin value falls into it.

distributions are changed. First, none of the post-commit
values falls into the range of test failures (i.e., the gray
block on the left). Second, the variance of post-commit
values is lower (i.e., less scattered in the figure), because
the developers removed the use of relative tolerance in the
commit. Before the commit of loosening the threshold,
many safe margin values fall into the test failure range
(i.e., the gray area in the figure). The assertions are flaky
and may fail in some runs. Hence, developers manually
loosened the threshold to avoid the test failures. After this
commit (i.e., the green lines), the assertions become less
sensitive to variance and thus less flaky.�

�

	

We find that OA assertions are often modified as code
evolves. Developers modify OA assertions for various rea-
sons, such as to increase test coverage, to accommodate
different hardware specifications, to support different data
representations, or to avoid test failures. Our study indi-
cates challenges on maintaining OA assertions as there
is no systematic support to help developers manage OA
assertions, e.g., detecting improper threshold values, and
suggesting changes on OA assertions when code evolves.

V. THREATS TO VALIDITY

Internal Validity. Studying oracle approximation practice
requires a list of OA-assertion APIs that developers use in
each studied library. In this work, we use an iterative approach
that combines reading documentation and code search. It is
possible that we might miss some OA-assertion APIs that are
rarely used in the codebases as we do not use an automated
method. However, we believe that it should minimal impacts
on the findings due to the rarity.

In RQ2, the manual categorization on oracle types is
partially subjective in some of the computation oracles, i.e.,
relevant internal implementation and native implementation.
To reduce the subjective bias in this process, we have two
people concluding the labels independently and discuss to
reach an agreement. In addition, when detecting code changes
on OA assertions, we rely on the fact that the modifications

(i.e. +/- lines) are performed directly on the statments of OA-
assertions APIs. Hence, we are not able to detect changes if
the changes are performed on the variables and the variables
are used in OA assertions.
External Validity. First, we focus on studying DL libraries
in Python or the Python part in a multi-language library
in this work. Our findings may not be generalizable to DL
libraries of other programming languages. In the future, we
plan to extend the study to include other languages, such as
C++ and Java. Second, our findings are based on the four
studied DL libraries. In the future, we plan to include more
DL implementations, including the ones in different languages.
Third, when analyzing the reasons behind the code changes
on OA assertions, because such analysis would require much
manual effort and understanding on the relevant code base, we
limit the study to one test module in TensorFlow. In the future,
we plan to expand the scope of this RQ significantly to reveal
different maintenance challenges developers might have when
testing different components in DL libraries.

VI. RELATED WORK

Studies on Testing Scientific Software. There exist some
efforts in literature that try to bridge the gap between software
engineering and scientific software. Particularly, researchers
from both communities start to realize the importance of
systematic testing on the developed scientific programs. Soft-
ware defects cause inaccurate results instead of models and
algorithms and may lead to publication retraction [12]. Hannay
et al. [13] studied the development process of scientific soft-
ware and revealed that despite a consensus on the importance
of testing, only a small number of scientists have sufficient
knowledge on testing. Carver et al. [14] perform case studies
on the development of five scientific software and find that
developers often find it challenging to perform validation
and verification due to difficulty of writing good test cases.
However, it remains unknown how developers actually conduct
testing in scientific software, i.e., detailed analysis on test
cases. Hence, our work takes an important step to understand
the testing practice in open-source DL libraries, which have
many similarities with traditional scientific software. More-
over, although testing scientific software often requires oracle
approximation [15], there is no prior work that focuses on
oracle approximation practices in scientific software.

Researchers have proposed various testing techniques to
alleviate the oracle problem in testing scientific software, such
as metamorphic testing [16], [17] and property testing [18].
Interesting, our study highlights that when using non-oracle
testing to test DL libraries, such as metamorphic testing and
differential testing, oracle approximations are commonly used.
Our findings indicate that future adaption of automated non-
oracle testing techniques in DL libraries should consider the
prevalence of oracle approximations to avoid flaky test or over-
restricted oracle comparison.
Studies on Software Testing. Researchers perform empirical
studies on practices of test cases to better understand the
challenges of software testing. Vahabzadeh et al. [19] study

the prevalence and reasons of bugs in test code. Barr et al. [10]
survey oracle problems in the literature. Zaidman et al. [20]
study the co-evolution of source code classes and test cases.
Pinto et al. [7] work on understanding common myths on
test-suite evolution. Their study find that although most test
case changes are about refactoring, deletion and addition of
test cases, there are some changes that complex and are hard
to automate. Beller et al. [21] work on understanding why
developers do not perform test in IDEs. Luo et al. [6] conduct
the study to understand why flaky tests occur. Beller et al. [22]
empirically study why CI tests fail by analyzing Travis CI
and GitHub. Prior studies on software testing focus on general
software and do not consider the peculiarity of DL libraries.
In this work, we present the first important step to understand
how developers perform oracle approximations in DL libraries,
which is not studied by prior work.
Testing Deep Learning Models and Deep Learning li-
braries. In recent years, there have been much research effort
paid to improve testing DL models. New coverage metrics
targeting at DL models are proposed. Automated testing tech-
niques are proposed to improve the testing of DL models. Pei
et al. [23] present the first white-box testing of DL models and
utilize a new coverage metric to guide the white-box fuzzing.
Tian et al. [24] propose to utilize fuzz testing (i.e., fuzzing
images) to generate more test data for autonomous driving
cars. More recently, more advanced coverage metrics [25],
[26] are proposed to improve testing DL models. Moreover,
Ma et al. [27] propose to use mutation testing to evaluate the
effectiveness of test cases on DL models. Differently, our work
focuses on studying testing practice in DL libraries, and the
quality will affect the accuracy of the generated models.

Some recent efforts are spent to improve the quality of
DL libraries and applications. Zhang et al. [28] performed an
empirical study on 11 open-source DL applications on GitHub
and categorized totally 179 bugs. Hung et al. [5] propose
a novel technique to detect defects in DL libraries based
on inconsistencies among different DL libraries. Their work
leverages the differences in the generated DL models, which
are high-level outputs, while our work examines tests at all
levels from the perspective of oracle approximation practice.
It remains as future work to examine how low-level oracle
approximations, if not done properly, may affect the accuracy
of high-level models.

VII. CONCLUSIONS

In this paper, we present an empirical study on oracle ap-
proximations in testing DL libraries. Our study is an important
first step to understand the current practices of using oracle
approximations in compute-intensive software, such as DL
libraries. Our work answers four research questions. First,
we study the prevalence of oracle approximations in the test
cases of DL libraries. We find that up to 25% of all the
assertions use oracle approximations. Second, we study and
conclude the diversity of test oracles and thresholds used in
oracle approximations. In many cases, oracles used in oracle
approximations are obtained through computation. Third, we

study the common code changes that developers perform
on oracle approximation assertions. Last, we conclude the
reasons behind the code changes on oracle approximations.
Our findings reveal maintenances challenges developers may
be faced with in oracle approximations and may inspire future
research to provide better tooling support for developers to
better manage oracle approximation practices.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015. Software available
from tensorflow.org.

[2] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[3] Theano Development Team, “Theano: A Python framework for
fast computation of mathematical expressions,” arXiv e-prints,
vol. abs/1605.02688, May 2016.

[4] F. Chollet et al., “Keras,” 2015.
[5] H. Pham, T. Lutellier, W. Qi, and L. Tan, “Cradle: Cross-backend

validation to detect and localize bugs in deep learning libraries,” in Pro-
ceedings of the 40th International Conference on Software Engineering,
2019.

[6] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of
flaky tests,” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, (New
York, NY, USA), pp. 643–653, ACM, 2014.

[7] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities
of test-suite evolution,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
FSE ’12, (New York, NY, USA), pp. 33:1–33:11, ACM, 2012.

[8] K. Atkinson and W. Han, “Error and computer arithmetic,” in Elemen-
tary Numerical Analysis, ch. 2, pp. 33–71, WILEY, 3 ed., 2004.

[9] “Tensorflow architecture,” 2018.
[10] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The

oracle problem in software testing: A survey,” IEEE Transactions on
Software Engineering, vol. 41, pp. 507–525, May 2015.

[11] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of jvm implementations,” in Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’16, (New York, NY, USA), pp. 85–99, ACM,
2016.

[12] U. Kanewala and J. M. Bieman, “Testing scientific software: A system-
atic literature review,” Information and Software Technology, vol. 56,
no. 10, pp. 1219 – 1232, 2014.

[13] J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and
G. Wilson, “How do scientists develop and use scientific software?,” in
Proceedings of the 2009 ICSE Workshop on Software Engineering for
Computational Science and Engineering, SECSE ’09, (Washington, DC,
USA), pp. 1–8, IEEE Computer Society, 2009.

[14] J. C. Carver, R. P. Kendall, S. E. Squires, and D. E. Post, “Software
development environments for scientific and engineering software: A
series of case studies,” in Proceedings of the 29th International Con-
ference on Software Engineering, ICSE ’07, (Washington, DC, USA),
pp. 550–559, IEEE Computer Society, 2007.

[15] D. Hook and D. Kelly, “Testing for trustworthiness in scientific soft-
ware,” in Proceedings of the 2009 ICSE Workshop on Software En-
gineering for Computational Science and Engineering, SECSE ’09,
(Washington, DC, USA), pp. 59–64, IEEE Computer Society, 2009.

[16] T. Y. Chen, Jianqiang Feng, and T. H. Tse, “Metamorphic testing of
programs on partial differential equations: a case study,” in Proceed-
ings 26th Annual International Computer Software and Applications,
pp. 327–333, Aug 2002.

[17] T. Y. Chen, J. W. Ho, H. Liu, and X. Xie, “An innovative approach
for testing bioinformatics programs using metamorphic testing,” no. 1,
2009.

[18] U. Kanewala and J. M. Bieman, “Techniques for testing scientific
programs without an oracle,” in Proceedings of the 5th International
Workshop on Software Engineering for Computational Science and
Engineering, SE-CSE ’13, (Piscataway, NJ, USA), pp. 48–57, IEEE
Press, 2013.

[19] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study of
bugs in test code,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 101–110, Sep. 2015.

[20] A. Zaidman, B. V. Rompaey, S. Demeyer, and A. v. Deursen, “Mining
software repositories to study co-evolution of production and test code,”
in 2008 1st International Conference on Software Testing, Verification,
and Validation, pp. 220–229, April 2008.

[21] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how, and
why developers (do not) test in their ides,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, (New York, NY, USA), pp. 179–190, ACM, 2015.

[22] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build:
An explorative analysis of travis ci with github,” in 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR),
pp. 356–367, May 2017.

[23] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, (New York, NY, USA),
pp. 1–18, ACM, 2017.

[24] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering, ICSE ’18, (New
York, NY, USA), pp. 303–314, ACM, 2018.

[25] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen,
T. Su, L. Li, Y. Liu, J. Zhao, and Y. Wang, “Deepgauge: Multi-
granularity testing criteria for deep learning systems,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, (New York, NY, USA), pp. 120–131, ACM,
2018.

[26] X. Du, X. Xie, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Deepstellar:
Model-based quantitative analysis of stateful deep learning systems,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, (New York, NY, USA), pp. 477–487,
ACM, 2019.

[27] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, and Y. Wang, “Deepmutation: Mutation testing of deep
learning systems,” CoRR, vol. abs/1805.05206, 2018.

[28] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2018, (New York, NY, USA), pp. 129–140, ACM, 2018.

