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ABSTRACT
Autonomous Driving System (ADS) is one of the most promising
and valuable large-scale machine learning (ML) powered systems.
Hence, ADS has attracted much attention from academia and prac-
titioners in recent years. Despite extensive study on ML models,
it still lacks a comprehensive empirical study towards understand-
ing the ML model roles, peculiar architecture, and complexity of
ADS (i.e., various ML models and their relationship with non-trivial
code logic). In this paper, we conduct an in-depth case study on
Apollo, which is one of the state-of-the-art ADS, widely adopted by
major automakers worldwide. We took the first step to reveal the
integration of the underlying ML models and code logic in Apollo.
In particular, we study the Apollo source code and present the un-
derlying ML model system architecture. We present our findings
on how the ML models interact with each other, and how the ML
models are integrated with code logic to form a complex system.
Finally, we inspect Apollo in a dynamic view and notice the heavy
use of model-relevant components and the lack of adequate tests
in general. Our study reveals potential maintenance challenges of
complex ML-powered systems and identifies future directions to
improve the quality assurance of ADS and general ML systems.

CCS CONCEPTS
• Computing methodologies→ Machine learning; • Computer
systems organization→ Other architectures.
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1 INTRODUCTION
In recent years, the research community has made significant break-
throughs in machine learning (ML) algorithms and practical applica-
tions, e.g., image recognition [21], natural language processing [36],
speech recognition [15], and health care [7]. Since the advances
in ML, and especially deep learning, practitioners have proposed
various solutions to solve important real-world challenges. From
face recognition to autonomous driving vehicles, engineers start to
design and implement large-scale complex ML-powered systems.

In particular, autonomous driving system (ADS) is one of the
most eye-catching and valuable ML-powered systems. ADS aims to
automate the vehicle driving process without the need of human in-
tervention. ADS relies on various hardware (e.g., cameras, ranging
or radar sensors) to collect information related to the current road
condition, and uses deep learning to assist making real-time driving
decisions. Thus far, ADS has shown great potentials, and business
analysts have estimated that its market value may be worth hun-
dreds of billions of US dollars [41]. However, testing and ensuring
the quality of ADS is a challenging engineering problem. Failures
in doing so may result in life-threatening accidents with severe
consequences [40].

Many exciting recent progress [14, 27, 38, 43] has been made for
the quality assurance of ML models in ADS. For example, DeepX-
plore [27] proposes a differential testing method to detect inconsis-
tent results in multiple ML model version variants. DeepTest [38]
generates test images by simulating camera noises to test deep
learning models in ADS. Similarly, Zhang et al. [43] transform pic-
tures taken by cameras in ADS using GAN to simulate environment
condition changes, and test their corresponding effect on the re-
sult of ML models. Although prior studies have shown promising
results in testing ML models for ADS systems, these studies only
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consider the testing of only ML models independently at unit level.
However, in reality, there may be various ML models that work
collaboratively based on the information received from different
cameras and sensors (i.e., not only relying on pictures taken by
one single camera). In addition, there may be extensive code logic
that interacts with ML models to form a complex ML-powered
system such as ADS. For example, ADS may utilize code logic to
provide some resilience to noises in the captured images. Therefore,
understanding how ML models interact with each other and their
integration with code logic in ADS may open up new avenues to
future research and practice on the quality assurance of ADS.

In this paper, we conduct an in-depth case study on Apollo 5.0 [3],
which is one of themost advanced ADS systems in theworld. Apollo
is developed by Baidu Inc. and is now widely adopted by a number
of world-leading automakers, some of which even start to offer
autonomous taxi services [4]. We first perform a qualitative study
of the ML models that are used in Apollo and their interactions
with the system. We find that Apollo contains a large number of ML
models (i.e., 28) that are responsible for various tasks such as traffic
light recognition, lane detection, obstacle perception and detection,
and trajectory prediction. Then, we study the relationship between
the ML models and code logic at the integration level. We find
that ML models interact with each other in diverse ways and code
logic plays a significant role in such interaction. As a result, the
integration of ML models and code logic has inherent complexity.
Finally, we inspect Apollo’s ML model usage in a dynamic view
and also the current testing effort.

In summary, this paper makes the following contributions:

• We find that Apollo contains 28 ML models that are trained
based on various deep learning frameworks (e.g., Caffe, Paddle,
and PyTorch). Developers may use multiple ML models for the
same task (i.e., through a configuration file), or use different ML
models for the same task but in different scenarios (i.e., through
code logic). We also highlight the potential ML maintenance
challenges related to ML model maintenance and management.

• We find that Apollo relies on a high definition (HD) map to
track information such as the location of traffic light. In addition,
Apollo may combine information from all of the camera, LiDAR,
and radar together to make a prediction result, instead of using
only camera as studied in prior research [14, 27, 38, 43].

• We find that there exist diverse ways that ML models interact
with each other. Such interactions are implemented by non-trivial
code logic, which further complicates the overall integration in
Apollo. An example of the impact of such interaction is that code
logic and the performance of one or several ML model(s) may
have a significant impact on the performance of other ML models.

• We categorize the diverse roles that code logic plays in ML model
interaction. For example, Apollo developers leverage historical
information (e.g., the color of the traffic light a second ago) and
various code logic to filter out or correct results from ML models.
Moreover, developers may use hard-coded threshold values to
determine the cutoff values for various ML model results.

• We inspect Apollo in a dynamic view using a simulated run and
find a heavy and repeated use of ML model-relevant code. We
also inspect the current test effort in Apollo and notice an overall
lack of adequate test.

We position this paper as a first step to understand the complex-
ity to integrateMLmodels and code logic in real-worldML-powered
systems. Such complexity calls for collaborative effort from both re-
searchers and practitioners to further improve the quality assurance
of ML-powered systems.
Paper organization. Section 2 provides a general background on
ADS. Section 3 provides the results to our research questions and
discussions of our findings. Section 4 studies the dynamic aspect
of ML model interaction in Apollo. Section 5 describes the threats
to validity of our study. Section 6 surveys related work. Finally,
Section 7 concludes the paper.

2 AN OVERVIEW OF AUTONOMOUS
DRIVING SYSTEMS

In this section, we describe a brief overview of the architecture in
typical Autonomous Driving Systems (i.e, ADS).

With the performance leap of machine learning and deep learn-
ing over the past decade, their application across different domains
on many challenging tasks becomes possible. Recently, both the
academia and industry have started researching and developing au-
tonomous driving systems, a representative complex ML-powered
system. The main goal is to create a driverless system that can
intelligently navigate a vehicle with full automation. To achieve
such an ambitious goal, an autonomous driving system, in general,
often contains several important high-level functionalities. First,
an ADS needs to have the capability to automatically locate the au-
tonomous driving vehicle and obtain relevant information of road
and surrounding environment (e.g., number and location of lanes
on a street, the current observed and upcoming status of traffic
lights). Second, an ADS needs to efficiently process the information
that it received in real time based on the current road condition. For
example, it needs to know the distance between the autonomous
driving vehicle and the vehicles around it. Third, after processing
the surrounding information on road conditions, an ADS needs
to make decisions on how the autonomous driving vehicle should
turn, accelerate, or decelerate. Finally, an ADS sends the movement
decision in the form of control signals to maneuverer a vehicle (e.g.,
braking, steering the wheel).

To locate the position of an autonomous driving vehicle, an ADS
often leverages a high definition map (HD map) and Global Navi-
gation Satellite System (GNSS) sensors. The HD map contains all
essential road data such as road boundaries, parking areas, the num-
ber of lane lines on a street, locations of traffic lights, crosswalk, etc.
GNSS sensors collect information frommultiple satellites to provide
a more accurate location estimation compared to regular GPS. An
ADS uses GNSS to locate the current position of the autonomous
driving vehicle on the HD map in centimeter-level accuracy [39].
After the autonomous driving vehicle identifies its location on the
map, ADS uses various perception sensors and equipment to obtain
information on the surrounding environment. ADS uses LiDAR
(Light Detection and Ranging) that leverages pulsed laser to create
a 3D model of the surrounding obstacles and their distance from
the autonomous driving vehicle. To increase the perception accu-
racy, an ADS is also often equipped with radars to collect moving
object signals, and uses machine learning models to process image
signals sensed by cameras to identify nearby objects and obstacles.
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Table 1: An overview of the statistics of Apollo.

Language No. files Lines of code

C/C++ 3,534 566,127
Python 279 36,233
Proto Buffers 251 18,964
Total 4,064 621,324

As a result, the perception component of an ADS often combines
information from various sources to make a more accurate estima-
tion on the location and movement of surrounding obstacles (e.g.,
cars or pedestrians). Based on the perception information, an ADS
then predicts, possibly using ML models, the future trajectories
of all perceived obstacles (e.g., the direction that a pedestrian is
moving towards to). The planning component will then determines
a reasonable trajectory according to driving scenarios, and sends
the corresponding decision to the driving components, controlling
the movement of a vehicle.

As a typical complex machine learning system, an ADS is com-
posed of complicated code logic, integration of various hardware
and software components with some of the decision making based
on results from machine learning models. There may even be cases
where multiple machine learning models collectively make a de-
cision, resulting in a significant impact on the subsequent actions
that an ADS takes. In this paper, we conduct a comprehensive study
of the industrial intelligent autonomous driving system (i.e., Baidu
Apollo 5.0) to perform an in-depth investigation of typical uses of
machine learning in a complex ML-powered system at different
levels, as well as the potential interaction of ML components with
logic of traditional software components. Apollo is a world-leading
commercial autonomous driving system that is open-sourced and
maintained by Baidu Inc. Table 1 summarizes the overall statistics
of Apollo. Apollo is deployed and tested in various cities around
the world and provides several enterprise solutions. Some cities
now even realize to leverage Apollo in offering autonomous taxi
services [4]. Therefore, understanding the roles and how various
ML models integrates and interacts in an ML-powered system can
greatly facilitate potential system region quality issue detection to
improve the quality and safety of ADS in practice.

3 CASE STUDY AND RESULTS
In this section, we study Apollo’s system architecture, and the inter-
action between ML models and traditional software components by
investigating three research questions. For each research question,
we summarize the motivation, approach, results, discussion, and
implication.

RQ1: What is the ML model architecture and
relevant information flow in Apollo?
Motivation. Recently, extensive studies have been performed on
testing and analysis atML component level [20, 27, 38, 42, 43], which
is an important first step for system-level analysis. In practice, an
ML model is often not used standalone. Instead, it is integrated
into a larger system, wrapping with glue code, and interacting with
logic of traditional software components. Up to present, it still lacks
a study to perform an in-depth analysis of how an MLmodel is used

in a complex ML-powered system, e.g., the roles of these MLmodels
and how they interact with traditional software, together forming a
larger system. This study intends to bridge this gap in performing a
comprehensive study on the typical complex ML-powered system,
i.e., Apollo autonomous driving system. In practice, an Autonomous
Driving System (ADS) often contains multiple components where
each component may use various machine learning models to make
life-critical decisions. Understanding the types and functionality of
these MLmodels would be an important first step to facilitate future
research on quality assurance of ADS and ML-powered system
testing in general.
Approach.We adopt a hybrid approach that combines both auto-
mated andmanual analysis to analyze theMLmodels used in Apollo.
First, we manually study Apollo documentation and source code to
create a list of theML frameworks that Apollo uses. During ourman-
ual analysis, we find that Apollo follows a practice where it loads
external trained ML models into the system by reading the model
files using file names. These model files contain a file extension
based on the ML frameworks for which the model is trained. For ex-
ample, in Apollo, the model trained by the Caffe framework [6] has
an extension of .caffemodel, and the model trained by PyTorch [29]
has an extension of .pt. Hence, in our second step, we perform the
file extension matching study of the ML frameworks that Apollo
uses. Then, we perform a systematic file extension searching in
Apollo source code to localize each ML model. Finally, we perform
a manual inspection to categorize each ML model and based on
its purpose (e.g., the functionality of a model) and location in the
source code (e.g., component in the system). Note that some ML
model files may be duplicated and outdated (e.g., indicated in the
source code or Apollo documentation). Therefore, we filter out such
ML models during our manual study.
Results. Table 2 summarizes the identified ML models in Apollo.
Similar to the finding in a prior study [12], we find that typical
ML models, especially deep neural networks (e.g., Convolutional
Neural Networks and Recurrent Neural Networks) are widely used
in Apollo. We manually uncover the interaction of the components
in Apollo that contain ML models (Figure 1). In total, we found
28 ML models. The ML models can be categorized into four ma-
jor categories: (1) traffic light perception, (2) lane perception, (3)
obstacle detection, and (4) trajectory prediction. Interestingly, for
each model category, Apollo often provides several ML models (i.e.,
see column No. Model in Table 2). For example, in the Camera Per-
ception component, there are four ML models related to obstacle
detection. Developers need to choose which one of the four ML
models to use, in a configuration file, when detecting obstacles.

Next, we discuss how ML models are used in each category.
Traffic Light Perception. Traffic light perception relies only
on cameras and contains four different ML models for dif-
ferent types of traffic light. Traffic light perception module uses
cameras to detect the presence of traffic lights in a region of interest
(ROI) and recognizes the color of the detected traffic light as red,
yellow, green, black, or unknown. Black means the light status is
uncertain (e.g., when the light is blinking). There are three major
parts in the traffic light detection module:
Identifying initial traffic light location. ADS receives information
on the presence and the position of traffic light by querying the HD
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Figure 1: The relevant components and workflow of Apollo, where the green boxes represent ML models in the system.

Table 2: An overview of the machine learning models in Apollo.

Component Model Name ML Framework Model Type No.
model

Description

Traffic Light Perception

Traffic_Light
_Detection

CaffeNet CNN 1 Detect traffic lights from images captured by camera.

Horizon_Light CaffeNet CNN 1 Recognize horizontal traffic light.
Vertical_Light CaffeNet CNN 1 Recognize vertical traffic light.
Quadrate_Light CaffeNet CNN 1 Recognize quadrate traffic light.

Lane Perception
Denseline TensorRT CNN 1 Detect lane line from images captured by camera using denseline.
DarkSCNN CaffeNet

PaddleNet
SCNN 3 Detect lane line from images captured by camera using dark SCNN.

Obstacle Perception

Obstacle_Feature
_Extraction

CaffeNet YOLO3D 1 Extract feature for each detected object.

Camera_Obstacle
_Detection

PaddleNet
TensorRT

YOLO3D 4 Detect obstacle from images captured by camera.

LiDAR_Velodyne_16 CaffeNet CNN 1 Use 16 channels Velodyne LiDAR to perceive obstacles.
LiDAR_Velodyne_64 CaffeNet CNN 1 Use 64 channels Velodyne LiDAR to perceive obstacles.
LiDAR_Velodyne_128 CaffeNet

PaddleNet
CNN 2 Use 128 channels Velodyne LiDAR to perceive obstacles.

Trajectory Prediction

Vehicle_Cruise_Cutin PyTorch MLP and
CNN-1d

1 Predict vehicle trajectories probability for cruise cutin scenarios.

Vehicle_Cruise_Go PyTorch MLP and
CNN-1d

1 Predict vehicle trajectories probability for cruise scenarios.

Vehicle_Junction_Map PyTorch CNN 1 Predict vehicle trajectories probability using a semantic map-based CNN
model for junction scenarios.

Vehicle_Junction_MLP PyTorch CNN+MLP 1 Predict vehicle trajectories probability using an MLP model for junction
scenarios.

Vehicle_Lane_Scanning PyTorch CNN 1 Scan lane sequences.
Vehicle_MLP N/A MLP 1 Predict vehicle trajectories probability using MLP model.
Vehicle_RNN N/A RNN 1 Predict vehicle trajectories probability using RNN model.
Vehicle_Lane_Aggregate PyTorch RNN, MLP

and CNN
3 Aggregate lane and obstacle information to predict vehicle trajectories

probability.
Pedestrian_LSTM PyTorch LSTM 4 Predict pedestrian trajectories using LSTM model. It contains four steps: 1)

Get position embedding; 2) Get social embedding; 3) Conduct single LSTM
and update hidden states; 4) generate trajectory point.

Map. If a traffic light exists at the current location, then images are
taken by the camera and sent to the next step for location detection.
Traffic light location detection. ADS uses a Faster R-FCNN (Region-
based Fully Convolutional Network) model to process the images

thatmay have a traffic light (i.e., themodel in the category TrafficLight-
Detection in Table 2). The model outputs the identified locations of
the traffic light using bounding boxes with a score (e.g., the likeli-
hood that a bounding box identifies a traffic light).
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Traffic light recognition. Given each bounding box obtained from
the previous step, traffic light recognition models then output the
probabilities of the light being red, yellow, green, and black. The
class with the maximum probability is regarded as the light’s status.
If no probability value is larger than a predefined threshold (default
value is 0.5), the color will be recognized as black (i.e., unknown).
Note that, based on the shape of the traffic light (i.e., horizontal,
vertical, and quadrate), Apollo would use the corresponding ML
model (as shown in Table 2) for traffic light recognition.

Lane Perception. Lane perception relies on cameras and de-
velopers can specify which ML model to use in a configura-
tion file.Apollo has two lane detection MLmodels: darkSCNN [26]
and denseline. After receiving the preprocessed image taken by the
camera, lane detection first reads a configuration file to determine
which ML model to use as well as whether to deal with image dis-
tortion. Then, the loaded ML model detects the positions of the
polynomial curve and the position of the lane line. darkSCNN sup-
ports vanishing points to better detect curved lines or lane lines
blocked by obstacles [26].
Obstacle Perception and Detection. ADS may combine infor-
mation fromvarious sources (e.g., several LiDAR sensors and
radar) to improve perception accuracy. Obstacles (or objects)
such as cars, trucks, bicycles, or pedestrians on the road can be
recognized by using cameras or LiDARs. The model output includes
a 3D position of the object (e.g., projected from the 2D input image,
or obtained from the point cloud generated by LiDAR), the type
of the object and a confidence score, the relative position, velocity
and direction that the object is moving towards, and a series of
historical trajectory points of the object in the past few seconds.
Below, we discuss obstacle detection using cameras and LiDAR.
Obstacle detection using cameras. The camera detection algorithm
is designed based on amulti-task YOLO 3DNeural Networkmodel [30–
32]. Given a 2D image as the input, the output layer of the YOLO
model predicts various properties of the object: object center point,
object width, object height, object confidence (i.e., how likely it is an
object), class confidence (e.g., how likely the object is a vehicle), the
projected 3D dimensions of the object, the object orientation, and
the orientation confidence. With the above-mentioned information,
Apollo can transform a 2D object on the image to bounding boxes
on a 3D image.
Obstacle detection using LiDAR.Apollo LiDAR detection component
utilizes the 16, 64, 128 channel (i.e., LiDARs with different number
of laser beams) Velodyne LiDARs [17] to detect an object. 3D point
cloud data obtained from LiDAR sensors will be refined by remov-
ing noises, such as buildings, using the HD Map. Only the data in
the ROI will be fed to an UNet FCNN model [33]) for segmentation
(e.g., get attributes for each point in the point cloud). There are
separate ML models for each of the 16, 64, 128 channel LiDAR. For
each point, the model would output attribute information such as
the probability of being a valid object, class probabilities, confidence
score, object height, object heading, object center offset, etc. Then,
the points that do not belong to an object (e.g., background) will
be filtered out. Finally, the points that belong to the same object
will be clustered together based on the attribute information. For
example, points that represent the same vehicle may be clustered

together. Note that each cluster would have a confidence score (i.e.,
calculated based on the average confidence score of every point in
the cluster) and the clusters that have a score below a threshold
(i.e., defined in a configuration file) would be removed. The final
detected objects would correspond to the final clusters resulted
from the segmentation process.

As shown in Figure 1, Apollo uses algorithms, such as Kalman
filter [24], to fuse the detection results from LiDAR, camera, and
radar to increase object perception and detection accuracy. More-
over, the inputs to the LiDAR segmentation models (i.e., one ML
model for each of the 16, 64, 128 channel LiDAR sensor) are also
the fused results from multiple sensors. In short, instead of using
one source of information or relying on one model result, ADS
leverages multiple data sources and combines a fused prediction
result to improve accuracy.
Trajectory Prediction. Trajectory prediction involves using
various ML models for different scenarios. The trajectory pre-
diction component predicts the trajectories of obstacles/objects,
such as vehicle and pedestrian, so that ADS can plan the route ac-
cordingly and avoid collision. The trajectory prediction component
involves various ML models, and it chooses the most appropriate
ML model based on the perception information. With the infor-
mation from the above-mentioned object perception and detection
components, and the HDmap, the prediction component prioritizes
the sensed obstacles/objects to caution, normal, or ignorable. Then,
for each unignorable object, the prediction component chooses an
ML model for prediction based on information such as the type of
the object (e.g., vehicle, pedestrian, bicycle, or unknown) and the
status of the object (e.g., on lane, off lane, in junction, or in cruise).
Note that developers can change in a configuration file where an
ML model should be used in different scenarios (more discussion
on this in RQ2).
Pedestrian prediction. Pedestrian prediction takes the pedestrian
historical positions and the social information (e.g., the number and
position of the people near the pedestrian, which may have an ef-
fect on human-to-human interaction) as input to the ML model [1].
Apollo uses an attention-based Long-Short Term Memory (LSTM)
network [1, 16] to predict the trajectory points of the pedestrian in
the next few seconds.
Vehicle prediction. Vehicle prediction contains two scenarios, one is
when a vehicle is moving on a lane (i.e., cruising), and the other one
is when a vehicle is near a road junction (e.g., a traffic light or stop
sign). For a vehicle moving on the lane, the ML models combine the
vehicle’s state, historical movement state, and lane line information
to calculate a probability that the vehicle may move to a different
lane. For a vehicle that is near a road junction, the ML model pre-
dicts the intention of the vehicle (e.g., go straight or turn right)
by using information such as the direction and angle of the head
of the vehicle. Some ML models are also trained using data from
the HD map to make more accurate prediction near road junctions
(e.g., using the model “Vehicle_Junction_Map”). After predicting
the intention of the vehicle, other ML models will predict the future
trajectories of the vehicle in the next few seconds.
Discussion and Implication.
Future studies should provide support to ML model management and
evolution. As we found in Apollo, developers can choose which ML
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model to use for a given task in a configuration file. However, this
may cause some potential model maintenance issues. As the number
of ML models increases, some models may not be as up-to-date as
others (e.g., had less training data or used a less powerful algorithm).
There may be life-critical consequences when developers choose
an older ML model. Moreover, deciding which ML model to use can
be a challenging decision. Future studies should provide support
to developers on choosing the optimal ML model for a given task
under different situations (e.g., different cities), and help developers
maintain variants of the models.
ADS relies on ML models that are trained using various deep learning
and machine learning frameworks. Prior studies [13, 28] found that
different frameworks may result in a model with slightly differ-
ent performance. As shown in Table 2, Apollo developers use ML
models that are trained using various frameworks (i.e., CaffeNet,
Paddle, PyTorch, and TensorRT). Therefore, the performance of
some ML models may be inconsistent and suboptimal. There may
also be maintenance overhead, as developers need to maintain code
that interacts with the ML models that are trained using various
frameworks. Future studies may help developers reduce mainte-
nance overhead by providing a better abstraction of different ML
frameworks.
Some functionalities of ADS rely on HD map, which may be a single
point of failure. We found that Apollo relies on the HD map for
various tasks, such as knowing the estimated location of a traffic
light and the information on various traffic sign (e.g., speed). Some
MLmodels (e.g., Vehicle_Junction_Map) also make prediction based
on input information received by querying the HD map. As a result,
an outdated HDmap may be a single point of failure that may affect
the subsequent decisions of the ML models in the system. Although
ADS may use vehicle-to-everything (V2X) to exchange information
between the vehicle and other entities that may affect the vehicle
(e.g., traffic light) [9], such services may not be widely available yet.
Future studies may consider testing the impact of HD map or V2X
on the decision of ADS.

We find that there are 28 ML models in Apollo, trained using
different ML frameworks. The Platform provides flexibility, sup-
porting configurable ML model selection for a particular task.

RQ2: What are the relationship and interaction
between code modules and ML models?
Motivation. The uncovered model architecture of Apollo and the
results of RQ1 reveal that there exist non-trivial interactions among
the ML models. Such interactions are implemented with the help
of code logic. The interactions may further complicate ML model
testing and pose new challenges in the integration testing between
the models and code modules. For example, the output from one
model may be in diverse data formats (i.e., requiring post-processing
steps), become part of the input of several ML models, and require
proper validation before inputting to other ML model or code logic.
Therefore, to provide guidance on future research on improving the
testing of AI-powered system, in this RQ, we present our analysis
results on the ML model interactions and how code plays a role in
such interactions, e.g., pre-, post-processing and validation steps.

1 //line 2-4 are from a CyberRT configuration file

2 obstacle_conf {...

3 evaluator_type: CRUISE_MLP_EVALUATOR

4 ...}

5

6 case ObstacleConf::CRUISE_MLP_EVALUATOR: {

7 evaluator_ptr.reset(new CruiseMLPEvaluator());

8 }

9 ...

10 void CruiseMLPEvaluator::LoadModels (){

11 torch_go_model_ptr_ =

12 torch::jit::load(FLAGS_torch_vehicle_cruise_go_file, ...);

13 }

14 ...

15 //Using gflags to define a string for the model file path

16 DEFINE_string(torch_vehicle_cruise_go_file, <file_to_a_ML_model>)

Figure 2: An example on how Apollo manages and
loads different ML models in a flexible manner.
CRUISE_MLP_EVALUATOR is configured in line 3, initi-
ated in line 7 and loads a model file in line 12.

Approach. We uncover and present the ML model architecture in
Apollo as described in RQ1. The MLmodel dependency architecture
shows a high-level interaction, such as the outcome of the traffic
light detection model is part of the input for traffic light recognition
model. However, the details of such interactions are lacking in the
high-level model architecture. For example, what types of data are
being transmitted among the models, and what functionalities the
code logic can provide in such transmissions. To obtain such details,
we perform a comprehensive qualitative analysis of the Apollo code
base. The steps in the qualitative analysis are as follows.
(1) Understanding how ML models are managed, used and interact
in Apollo. To provide flexibility and better management of model
variability, Apollo developers utilize a combination of configuration
management (i.e., CyberRT [5]), gflags [10], and Proto Buffers [11].
Apollo first loads the configuration files to identify whichMLmodel
module to use. An ML model module is a code component that
abstracts the common behaviors of one ML model (e.g., load, infer,
and reset). In one ML model module, the file path of the used ML
model is further abstracted using gflags as a defined string to be
substituted during compilation. For the interactions among ML
models, Apollo uses CyberRT and Proto Buffers to communicate
among ML model modules: One ML model module publishes a
message (i.e., defined by a proto file) and the otherMLmodelmodule
receives the publishedmessage. Figure 2 shows a simplified example
of how anMLmodel file is loaded and managed in Apollo. Note that
the code snippets are from different configuration and C++ files.
Line 3 specifies the model module to use in a CyberRT configuration
file. Then, themodel module (CruiseMLPEvaluator) is initiated based
on the configuration file (see line 7). In line 11-12, the model file is
loaded according to a pre-defined gflags string (line 16).
(2) Finding the model modules in use. We started the qualitative
analysis by finding the ML model modules based on tracing the
model file paths in Apollo (i.e., uncovered in RQ1). On one hand, we
identified the representation of the absolute path of ML model files
(e.g., traced_online_lane_enc.pt by PyTorch). This step is necessary
as Apollo developers do not directly use the absolute paths of the
ML model files, but use an internal representation abstracted by
gflags. On the other hand, the MLmodel modules are flexibly loaded
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in Apollo components (e.g., perception and prediction) based on
CyberRT configuration files. By combining the information from
both the above-mentioned steps, we find the ML model modules
that are used in Apollo and their corresponding ML model files.
(3) Tracing the code that interacts with the ML models. We started
with the ML model modules that abstract the common behaviours
of ML models. In each ML model module, we first searched for the
model inference code. For example, the inference API for PaddlePad-
dle, TensorRT, or Caffe is called Infer(). Then, we identified the code
that prepares the input of the ML models (i.e., a set of feature val-
ues) and produces the output of the ML models (i.e., prediction
results). Finally, we traced the backward propagation of the input
and the forward propagation of the output until the propagation
hits the boundary of the ML model. For the input of an ML model,
the boundary is set until the code reads input from the hardware
(e.g., sensors) or from another ML model (i.e., receiving messages
in CyberRT). For the output, the boundary is set until the output is
being passed to other code modules or other ML model modules
(i.e., publishing messages in CyberRT). In short, we include all the
code logic that interacts with each of the ML models, i.e., pre- and
post-processing, and validation, for further manual analysis.
(4) Tracing the data transmission among the ML models. Apollo
leverages proto files to represent data transmitted among ML mod-
els. For example, the model “LiDAR obstacle detector” outputs
the type of the detected obstacle (e.g., vehicle, pedestrian, bicy-
cle, unknown movable, unknown unmovable, or unknown), and
stores the result in a message defined in the proto file (i.e., “per-
ception_obstacle.proto”). Subsequently, the ML models in the pre-
diction component can use the stored obstacle type as input. We
manually examined the relevant proto files and recorded how these
proto files are used by different model modules for communicating
among various ML models.

Upon identifying the relevant artifacts (i.e., code, model mod-
ules, and proto files) by following the aforementioned steps, we
performed a manual analysis on the 28 ML models in Apollo to
reveal how ML models interact with each other and the key roles
played by the code logic in such interaction.
Result. Based on the 28 models in Apollo, we summarize common
ways that theMLmodels may interact with each other. Furthermore,
by analyzing the code logic implemented for MLmodel interactions,
we uncover the roles of such code modules in the integration. We
summarize the common ML model interactions in Apollo below.
(1)All the output of oneMLmodel is used exclusively and entirely by
another ML model as input. For example, the output of traffic light
detection model, i.e., bounding boxes and scores (the likelihood
that a bounding box identifies a traffic light), is the input to one of
the three ML models in traffic light recognition depending on the
traffic light type.
(2) The output of one ML model is used to post-process the output
of another ML model. For example, the lane detection models (i.e.,
“Lane_Detection” in Figure 1) identify lane locations and further
use the information to calibrate the camera framework. The cali-
brated camera framework is leveraged to post-process the obstacle
detection results (i.e., “Camera_Obstacle_Detection” in Figure 1).
(3) The outputs of several ML models are combined together as
another ML model’s input. For example, prediction uses an LSTM

encoder to process the vehicle movement history which is detected
and recorded by the obstacle perception component. The prediction
also uses either LSTM or one dimensional CNN encoder to encode
lane line learned from the lane perception component. The two
encoders are used together in predicting the trajectory of a vehicle
driving on a lane.

Given the diverse ML model interactions, code modules play
non-trivial roles in such interactions. Upon identifying the code
logic in ML model interactions, we categorized their roles in pre-,
post-processing, and validating the input and output of ML models.
Filtering out invalid output based on common sense.ML mod-
els may produce output that does not exist in reality. For such cases,
developers employ simple heuristics in the code logic to only keep
valid outputs. For example, in traffic light detection, the ML model
outputs the boundaries of the detected traffic lights (i.e., bound-
ing boxes), each of which is defined by four coordinates. However,
some detected areas may not exist in reality (i.e., the areas of the
bounding boxes are negative). Developers implement the logic in a
method named SelectOutputBoxes() to remove the invalid detected
results and only keep the valid ones.
SelectingMLmodel output using hard-coded or user-specified
parameters. To improve the accuracy of the ML model results,
Apollo developers set criteria to only select certain ML model re-
sults that satisfy the defined criteria. Compared to common sense
related filtering, such selection requires domain knowledge and is
more related to specific user needs. Hence, some of the criteria are
configurable by users. Table 3 shows a list of criteria and thresholds
that Apollo developers use for different ML models. Most of the
parameters are related to the confidence threshold of ML model
results. There are a few exceptions based on the specific application
scenarios. For example, in traffic light detection, whether bounding
boxes have significant overlaps (i.e., the default value is 60%) is
used to delete certain bounding boxes (e.g., they are likely to be the
same traffic light). In most cases, the parameters can be configured
by users, as indicated by the last column in Table 3.
Using code logic to complement the imperfect outcome from
MLmodels. The data-driven and probabilistic nature of ML models
makes it unable to reach 100% general accuracy in practice. There-
fore, in addition to heuristic-based filtering, the inaccurate results
from ML models may be further refined by their downstream com-
putation modules. Apollo mainly uses a classic detection-to-track
approach based on Hungarian algorithm [22, 23] and Kalman fil-
ter [19] to track multiple objects. We observe that in Apollo, it is
common to utilize the tracking modules (non-machine learning)
to refine the outcome of the detection modules (ML models). In
short, one detection module (e.g., traffic light detection) forwards
the detection results to a corresponding tracking module (i.e., traffic
light tracker). Then the trackers (i.e., traffic light tracker) are used
to increase detection stability by remedying incorrect or missing
detections, e.g., detection may fail when an object is blocked by
other obstacles, and softening the jitters of detection bounding
boxes. Specifically, the traffic light tracker can revise the detection
results based on time-sensitive constraints. An example of such a
constraint is that “a yellow traffic light will not turn green in the
next moment”. For example, if the traffic light detection fails to
detect the color at a specific timestamp, it will output either BLACK
or UNKNOWN_COLOR. However, if the traffic light was detected in a
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Table 3: Hard-coded or user-specified parameters to validate and filter out output of machine-learning models in Apollo.

Components Parameter Name Default Usage Type

Traffic Light Perception iou_thresh 0.6 The overlap threshold for traffic light detection bound-
ing boxes. Bounding box has large overlap(>=0.6) with
others will be dropped.

hard coded

Traffic Light Perception classify_threshold 0.5 The decision threshold for traffic light classification. configurable
Lane Detection confidence_threshold 0.95 The confidence threshold for SCNN detection. configurable

Obstacle Detection (Camera)

confidence_threshold 0.4 The confidence threshold for YOLO detection. configurable
threshold 0.5 Non Maximum Suppression (NMS) threshold to filter

overlapped detection result.
configurable

inter_cls_nms_thresh 0.6 nms threshold to filter overlapped result in gpu. configurable

Obstacle Perception (LiDAR)

objectness_thresh 0.5 The objectness threshold to filter non-object in clus-
tering.

configurable

confidence_thresh 0.1 The detection confidence score threshold for filtering
out the candidate clusters in the post-processing step.

configurable

min_pts_num 3 In the clustering step, clusters that contains a few
points (<3) are removed.

configurable

stable color at a timestamp in close proximity, the detected color
will be revised based on the established constraints according to
the previously-detected color.

Note that such refinement is not limited to traffic light detection.
All the detection-to-track components in Apollo utilize feedback-
based refinement. How exactly each refinement is conducted is
also different. To give another example, the obstacle tracker uses
Hungarian algorithm to associate the detected obstacles to the
existing track list, then use Robust Kalman Filter to estimate and
correct inaccurate motion states in the track list.
Scenario-based ML model selection and input generation. As
shown in Table 2, there may be separate ML models for different
scenarios of the same task. For example, the trajectory prediction
components contain ten evaluators in code logic to deal with dif-
ferent scenarios, and each scenario has a corresponding ML model.
As one can see from the example in Figure 2 (i.e., Apollo uses
a flexible way to manage models), one evaluator may load more
than one ML models (e.g., CruiseMLP loads Cruise_Go_Model and
Cruise_Cutin_Model). The code logic in the evaluator then auto-
matically decides which ML model to use based on some dynamic
variables that present the current states (e.g., whether the vehicle
is on a lane). Interestingly, we also find that the inputs of the ML
models may be different in different evaluators. Therefore, devel-
opers need to apply code logic to extract different features to feed
into the corresponding ML model.
Applying fusion to combine information from various sen-
sors to improve perception accuracy. As described in Section 2
and RQ1, Apollo supports obstacle detection using cameras, Li-
DARs, and radars. However, none of the detection results is perfect
due to the limitation of the sensor (e.g., the camera is sensitive to
light change, and LiDAR will contain many noises for a compli-
cated environment) and ML model inaccuracy. Hence, ADS needs
to combine multiple sensor detection results to minimize the er-
ror and get a better perception result. Apollo fusion takes camera
tracking result, LiDAR tracking result, and radar detection result as
input. Users can define in the configuration which sensor results
can be fused. Developers rely main on algorithms such as Hungar-
ian Optimizer and Kalman filter to fuse the output. After applying
fusion, objects are published as an obstacle perception message
(e.g., PerceptionObstacles).
Discussion and Implication.

Future studies should consider testing the use of ML models for differ-
ent scenarios of the same task. Prior ML model testing research [27,
38] often only focuses on the behaviour of a single model for one
specific task (e.g., traffic light recognition). However, as we found,
in ADS, there may be several ML models, and each one is tailored
towards one variant of the same problem. For example, different
types of traffic light use different ML models. In the case of trajec-
tory prediction, ADS may choose the ML model depending on the
state of the vehicle (e.g., at interaction or cruising). Future research
should consider such design when testing ML models in different
scenarios.
Future studies should consider the complex ML model interactions
when testing ML models in large systems. Most of the current re-
search efforts to improve ML model testing focuses on testing a
standalone ML model (at unit level) without considering its inter-
actions with other ML models. Our study shows that a large-scale
ML-powered system commonly employs a diverse set of ML models
and leverages the ML model interactions to implement complex
functionalities. For example, Apollo utilizes multiple ML models
using data from different sensors, and improves the resilience of
model result in some critical decision-making processes. Consider-
ing such interactions is a pursuable direction to make testing ML
model more practical in real-world systems.
Future studies should investigate the maintenance challenges of the
code logic in ML model interactions. As we found, code logic plays
important roles in ML model interactions and has close connections
with the relevant ML models. The evolution of ML models is more
frequent than expected [34]. The needs of exchangeable ML models
for different scenarios may cause ML models to update even more
frequently. As ML models evolve, it poses maintenance challenges
on the code logic that should co-evolve. Failing to update the code
logic accordingly as ML models evolve may introduce bugs and
fail to achieve the optimal performance of ML models, and further
negatively impact the entire ML-powered system.
Future studies should consider testing the integrated behaviours of ML
model and code logic. Our study shows that certain code logic and
ML models are closely dependent on each other. In some cases, the
integrated behaviours of one MLmodel and the corresponding code
logic may have a significant impact on the performance of another
ML model. ML models and source may need to co-evolve. Future
studies should provide approaches to better test the integrated
behaviours of ML models and source code to detect regressions.
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Developers use code logic to pre- and post-process ML model
input and result to improve prediction accuracy. ADSmay choose
which ML model to use based on different scenarios and relies
on different algorithms to combine results from different ML
models. Developers also provide configuration options to tune
the thresholds used in ML prediction.

4 THE DYNAMIC ASPECT OF APOLLO
In previous sections, we present and discuss the static view of
the ML models in Apollo through a qualitative study: the model
architecture and information flow, and how the code logic and
ML models interact and are integrated into Apollo. In this section,
we present some quantitative results from a dynamic view. We
exercise and perform runtime analysis of Apollo in two settings:
a production run in a simulator and in-house testing. We then
study two aspects related to the deployed ML models and their
relevant code logic. In particular, we first study how frequently
ML models are executed in a simulated production run. Then, we
inspect the current testing effort on the model relevant code logic,
i.e., the code coverages of Apollo CI tests on the model-relevant
code modules. We make a special focus of our study on two model-
relevant components (i.e., perception and prediction as indicated
in Table 2). In the rest of this section, we first describe how we
exercise Apollo in the two settings. We then present the results and
discuss the implications.
Running Apollo in a simulator. We exercised Apollo in a simu-
lated environment using a recorded playback from previous pro-
duction runs. Apollo has been deployed on roads to conduct tests
in the field in major cities in China. Data is recorded from such
production runs for later playback. The recorded data includes
everything the deployed self-driving car would receive from the
hardware (e.g., cameras, LiDAR, and Radar). A message is used
for internal data transmission managed by CyberRT. For example,
the LiDAR module may publish one message when it receives new
data. The playback we used lasts 9.983 seconds and contains 4,418
CyberRT messages.

To assess how frequently ML models are used in the simulated
production run, we inserted logging statements in each method in
Apollo and analyzed the generated logs by executing Apollo in the
simulator using the recorded playback. In total, we inserted logs in
1,994 methods from the perception and prediction (1,488 methods
and 506 methods, respectively) components and 6,598 methods
from other components. We analyzed the logs to count the unique
and repeated hits of the logged methods in Apollo.
Measuring code coverage of Apollo CI tests.Apollo developers
deploy test execution in continuous integration (CI) and then every
build is exercised against the CI tests. Overall, Apollo has a total
of 621 CI test files. Perception has the most test files among all
modules (159 tests). Prediction is the other module that uses ML
models, and contains 44 test files. We use LCOV [25] to measure the
common coverage metrics of the Apollo CI tests, i.e., line, method,
and branch coverage.
Results and Implications.
ML model usage in a dynamic view. We find that the methods in
model-relevant components (i.e., perception and prediction) are
executed heavily and repeatedly in the simulated run: 709/1,944
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Figure 3: Box plots of code coverages of each source code file
in Apollo: perception, prediction and the other components.

(35.5%) methods are executed at least once with an average of 1,965
repeated executions per method. On the other hand, only 3.5%
of the methods in other components are executed at least once.
Note that not each method will be exercised in a simulated run of
one playback, since we only execute Apollo once with the default
configuration.
Code coverage of code components in Apollo. We find that, the over-
all code coverage achieved by Apollo CI Tests is not high: 13.30% for
branch coverage, 21.50% for line coverage, and 33.90% for function
coverage. It is reasonable since Apollos is still under active develop-
ment, and that much of testing effort is paid to train/test ML models.
However, given the importance of code logic in forming such a com-
plex system, as our study reveals, improving code coverage is also
important to guarantee the quality assurance of life-critical systems
such as ADS. Furthermore, we show the breakdown (Figure 3) of
the coverage metrics per source-code file in different components:
perception, prediction and other code components. Perception and
prediction are the only two components that use ML models and
contain most of the ML model relevant code logic. Interestingly, we
find that the perception component achieves considerably higher
code coverages than other components, including the prediction
component. Our communication with Apollo developers confirms
that extra test effort is allocated to test the complexity in the per-
ception component due to its importance as one of the upstream
components in the information flow in Apollo. However, the code
coverage is still low. More testing effort is needed to improve the CI
test coverage in Apollo. Nevertheless, it may be very challenging due
to the complex nature of an ADS system and unprecedented coupling
among ML model and code logic.

5 THREATS TO VALIDITY
External validity. In this study, we conduct a case study on a
representative complex ML-powered system, i.e., one of the state-
of-the-art industrial autonomous driving systems (ADS), Apollo.
Currently, Apollo has adopted by major automakers, some of which
even start the deployment in some cities to offer autonomous taxi
services [4]. However, our results may still not generalize to other
ADS or ML systems. Our findings provide an initial overview on the
architecture of ML systems and howMLmodels are integrated with
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code logic. Since ML systems are becoming more critical in modern
society and little is known how these systems are developed, future
studies are needed to investigate the design and challenges of other
ML systems.
Internal validity. Much of our analysis relies heavily on manual
inspection of the Apollo source code and documentation. The first
two authors of the paper thoroughly studied the architecture of
Apollo and its design. Although many of our results are confirmed
by Apollo developers, there may still be biases in our results. To
mitigate the issue, the third and fourth authors also verify the
results of the manual inspection.

6 RELATEDWORK
In this section, we discuss the most relevant literature regarding
machine learning systems in the context of autonomous driving
vehicles (ADV), and empirical studies on machine learning engi-
neering practice.
Testing of ML Models for Autonomous Driving. Quality is-
sues of machine learning raise significant attention recently, and
we have witnessed an increasing trend of research on testing ML
models, especially on deep neural networks (DNNs) in the context
of autonomous driving. DeepXplore [27] proposes a differential
testing method to detect the DNNs behavior inconsistencies, which
are used for ADV steering control. DeepTest [38] proposes to gen-
erate tests by basic image transformations, which simulates the
real-world camera noises, to test the DNN models. DeepRoad [43]
performs more advanced driving scene transformation by GAN to
test the DNNs when environment condition changes occur. Deep-
Billlboard [46] performs testing through attacking billboard images
to mislead ADV DNN controls. Similar image-based testing, Cao
et al. [8] shows that LiDAR component could also be tested by
performing well-designed attack techniques. Haq et al. [14] re-
cently performs a comprehensive study to compare the offline and
online testing of DNN in the context of ADV, where they found
that offline testing is often more optimistic than online testing and
simulation-based methods can be useful in many cases. For more
comprehensive on the state-of-the-art progress on ML testing, we
refer interesting readers to the recent survey [42].

Different from existing work on testing ML models, our work in-
tends to investigate the practical ML system architecture, especially
on what and how ML models are used in a complex ML system, and
what is the relation and interaction of ML models with a traditional
software component, together forming the whole complex ML sys-
tems like Apollo. Our results show that ML models can be used for
various purposes and integrated into different parts of an ML sys-
tem. Obviously, testing each ML model at the unit level is necessary,
but still not enough. As a next important step, testing and more
general quality assurance should also be extensively performed at
the integration level and system level.
Empirical Study on ML Engineering. The data-driven develop-
ment of ML brings new challenges to the well established traditional
software system development process. Recently, we also witnessed
quite a few empirical studies on ML system engineering practices,
which would an important step to build high quality ML at system
level. Amershi et al. [2] performs a case study of ML system devel-
opment process at Microsoft, to investigate the current practices

and challenges. Zhang et al. [44] investigate the common challenges
in developing ML applications, by studying the posts and answers
on StackOverflow and Github. As the important foundation of ML
system, the ML frameworks are also studied by previous work
[18, 18, 35, 37, 45], which shows many state-of-the-art ML frame-
works (e.g., Tensorflow, Lucene, Mahout, Scikit-learn, Paddle, and
Caffe) can contain bugs. Furthermore, Guo et al. [13] find that com-
patibility issue also exists among current ML frameworks, where a
model can downgrade its performance when being migrated to a
different ML framework or platform. This posts great concern and
calls for attention that the dependency libraries of an ML system
could also be an important factor that impacts its quality. Some
recent work [28] starts to effectively detect the potential quality
issues in the framework. When it comes to ADS, Joshua et al. [18]
perform an early step study to investigate the common bug symp-
toms and causes. The results show that, as a complex system, the
bugs in ADS can scatter across the system, and many of the bugs
are still traditional software bugs.

Different from existing work, our work focuses on studying the
typical architecture of a complex ML system (i.e., Apollo). We made
an in-depth analysis on the roles of ML models, and how they inte-
grate into a larger system. This provides an important step towards
understanding and providing quality assurance for a complex ML
system. Our study confirms the necessity of providing quality as-
surance for a practical ML system at multiple levels, i.e., model
(unit) level, integration level and system level. New methodology,
toolchains, and benchmarks would be needed, that handles both
ML model and traditional software components.

7 CONCLUSION
In this paper, we present a case study on a representative and
complex ML system, i.e., autonomous driving system (Apollo). We
focus on unveiling its complex nature, i.e., various ML models and
their relationship with non-trivial code logic. We present the model
architecture in Apollo, and find that ML model interactions happen
frequently in diverse ways. Moreover, we find that non-trivial code
logic plays various roles in such interactions. Our further in-depth
inspection of Apollo in a dynamic view confirms a heavy use of ML
model relevant code components and reveals a lack of adequate test
at integration level in a diverse way. Our findings indicate important
maintenance challenges of complex ML-powered systems and call
for collaborative effort to improve the quality assurance of ADS
and general complex ML systems at the system level.
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