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Abstract—Test-based automated program repair techniques
use test cases to validate the correctness of automatically-
generated patches. However, insufficient test cases lead to the
generation of incorrect patches, i.e., passing all the test cases,
however are incorrect. In this work, we present an exploratory
study to understand what are the runtime behaviours are being
modified by automatically-generated plausible patches, and how
such modifications of runtime behaviours are different from
those by correct patches. We utilized an off-the-shelf invariant
generation tool to infer an abstraction of runtime behaviours
and computed the modified runtime behaviours at the abstrac-
tion level. Our exploratory study shows that majority of the
studied plausible patches (92/96) expose different modifications
of runtime behaviours (i.e., captured by the invariant generation
tool), compared to correct patches.

Index Terms—automated program repair, patch correctness,
empirical study

I. INTRODUCTION

Over the last decade, various automated program repair
(APR) techniques [1, 2, 3, 4, 5, 6] are proposed to automati-
cally generate bug fixes at source-code level. APR techniques
aim to save tremendous developers’ time spent in bug fixing
activities, and the valuable efforts can be diverted to other
important development tasks, such as new features and perfor-
mance optimization. There has been an increasing attention in
industry to to adopt APR techniques in practice [7, 8].

Among the various types of APR techniques, e.g., static
analyzer-based [9, 10, 7] and bug-report-based [11, 12], test-
based APR remains as one of the mainstream APR techniques.
Test-based APRs utilize test cases to guide the repair process
and also to validate the correctness of the machine-generated
patches. If a machine-generated patch makes all the test cases
pass, test-based APRs techniques will present the patch to
developers, and terminate the repair process. However, due to
insufficient test cases [13], test-based APR techniques may
generate incorrect patches, i.e., patches that fail to fix the
software bugs however make all the test cases pass. Following
previous work, we refer to the incorrect machine-generated
patches as plausible patches.

Plausible machine-generated patches hinder the perfor-
mance of test-based APR techniques and negatively affect
the adoption of APR techniques in practice. Previous ef-
forts to identify plausible patches include applying ranking
algorithms to de-prioritize the plausible patches [14], using
new tests [15] and improved test oracles [16] to filter out

plausible patches, and integrating improved validation in repair
process [17]. Plausible machine-generated patches appear to
have the “desired” impacts on program executions that are
identical to correct patches, i.e., making all test cases pass.
However, differences begin to surface if program executions
are compared in detail. For example, a recent study performed
by Xiong et al. [15] shows that simple heuristics based on test
coverage, i.e., complete-path spectrum [18], can be used to
differentiate plausible patches from correct patches.

In this work, we explore the direction of unveiling the
differences between plausible and correct patches based on
their different impacts on runtime behaviours. In particular,
we utilize program invariants to abstract runtime behaviours
and represent modified runtime behaviours using changes
on program invariants. Program invariants are dynamically
concluded to describe observed run-time behaviours during
test case executions. Program invariants have been shown to
reveal different aspects of program executions compared to
coverage metrics. For example, Harder et al. [19] showed
that utilizing dynamically-generated invariants is better for
certain types of bugs compared to coverage metrics when
being applied to minimize test suites. Recently, Cashin et
al. [20] propose to use invariants to cluster machine-generated
patches for better understandability since invariants capture
semantic level of information.

In this study, we leverage an off-the-shelf invariant gen-
eration tool Daikon [21], to infer program invariants. We
performed an empirical study to understand how dynamically-
generated invariants (invariants for short) play a role in the
context of automated program repair. We answer the following
research questions (RQs) by analyzing a total of 73 bugs
and their corresponding 169 distinct patches (96 plausible
machine-generated patches and 73 correct patches). The bugs
are from Defect4J dataset and the machine-generated patches
are collected by prior work [15]

• RQ1: What are the impacts on program invariants
by a correct patch?
This RQ sets a baseline of how a correct patch may
modify program runtime behaviours, i.e., represented by
program invariants. One may expect that program runtime
behaviours during passing test cases may not be affected
too much by a correct patch since bug fixes should
not affect correct program behaviours. On the contrary,
runtime behaviours that are concluded based on failing



test cases, especially unexpected program behaviours,
may be significantly modified by a correct patch.

• RQ2: What are the impacts on program invariants
by a plausible patch?
Previous studies [13, 16] show that a plausible patch
may fail to fix the bug completely, and even break
existing functionalities, i.e., passing test cases fail to
identify the newly-introduced incorrect behaviours. This
RQ investigates to what extent, runtime behaviours are
being modified by plausible patches in both passing and
failing test cases.

• RQ3: What are the scopes of invariants impacted by
test-passing patches?
Invariants are inferred at each program point. Among
all the program points tracked and analyzed, only a
portion of them are affected by test-passing patches,
i.e., including both correct and plausible ones. Patches
may only affect the invariants of the program points
that are modified by the patches, or may spread out the
entire execution (i.e., covered program points). A low
impact scope indicates that we can be more selective in
monitoring certain program points in invariant generation.
Instrumenting and summarizing at fewer program points
can significantly speed up the process.

• RQ4: How often one plausible patch may affect
the inferred invariants differently compared to the
corresponding correct patch?
If plausible patches commonly modify program run-
time behaviours in a different way compared to correct
patches, it is promising to derive techniques to automat-
ically identifying plausible machine-generated patches
based on the inferred abstractions of runtime behaviours.

We position this paper as a preliminary study towards
understanding plausible patches by APR techniques using
program invariant. In this work, we present quantitative results
to answer the four above-mentioned RQs.

II. AN ILLUSTRATION EXAMPLE

We will use a real bug example from Chart to illustrate how
a plausible patch will affect program behaviours and how such
impacts are captured by program invariants.

Figure 1 shows a simplified class of the bug Chart-3 in
Defect4J. The buggy method is createCopy (line 28-45),
which will create a new object TimeSeries with part of
data field (declared in line 3) with a specified range defined
by start and end. The root cause is that maxY and minY
which are the maximum and minimum values of the data
field, may not be correctly updated in the clone process. First,
calling the clone method in java.lang.Object (line
32) will also copy the original values of maxY and minY to
the new object. Then, minY and maxY will be updated when
calling add in line 41. The method add will update minY
and maxY by calling updateBoundsForAddedItem (line
13). However, to make updateBoundsForAddedItem to
function properly, the initial values of minY and maxY should
be Double.NaN, as shown in the correct patch (line 33-34).

1 *public class TimeSeries {
2 ...//Below we show relevant class fields
3 protected List data;
4 private double minY;
5 private double maxY;
6 ...
7 public void add(TimeSeriesDataItem item, boolean

notify) {
8 ...
9 boolean added = false;

10 //Add the item, if successful, added will be true
11 ...
12 if (added) {
13 updateBoundsForAddedItem(item);//see below
14 ...
15 removeAgedItems(false);//see below
16 ...
17 }
18 }
19 public void removeAgedItems(boolean notify) {
20 if (getItemCount() > 1) {
21 if (...) {//deciding whether or not removing

aged items
22 removed = true;
23 a}
24 - if (removed) {
25 +

if(org.jfree.data.time.TimeSeries.this.data!=null)
{ // incorrect patch

26 findBoundsByIteration();
27 }
28 }
29 public TimeSeries createCopy(int start, int end)
30 throws CloneNotSupportedException {
31 ...
32 TimeSeries copy = (TimeSeries) super.clone();
33 + copy.minY = Double.NaN; //correct patch
34 + copy.maxY = Double.NaN;
35 copy.data = new java.util.ArrayList();
36 if (this.data.size() > 0) {
37 for (int index = start; index <= end; index++) {
38 TimeSeriesDataItem item =

(TimeSeriesDataItem)
this.data.get(index);

39 TimeSeriesDataItem clone =
(TimeSeriesDataItem) item.clone();

40 try {
41 copy.add(clone);
42 ...
43 }
44 }
45 return copy;
46 }
47 private void

updateBoundsForAddedItem(TimeSeriesDataItem
item) {

48 ...//This method updates this.minY and this.maxY
according to the parameter item. It does not
reset this.minY and this.maxY the same way as
line 52-53.

49 }
50 private void findBoundsByIteration() {
51 //The two lines below are identical to the correct

patch in line 33-34.
52 this.minY = Double.NaN;
53 this.maxY = Double.NaN;
54

55 Iterator iterator = this.data.iterator();
56 while (iterator.hasNext()) {
57 TimeSeriesDataItem item = (TimeSeriesDataItem)

iterator.next();
58 updateBoundsForAddedItem(item);
59 }
60 }
61 }

Fig. 1: The buggy class TimeSeries of Chart-3 in Defect4J



1 *public void testCreateCopy3() {
2 TimeSeries s1 = new TimeSeries("S1");
3 s1.add(new Year(2009), 100.0);
4 s1.add(new Year(2010), 101.0);
5 s1.add(new Year(2011), 102.0);
6

7 TimeSeries s2 = s1.createCopy(0, 1); //Create a copy
with the data added in line 3-4.

8 assertEquals(100.0, s2.getMinY(), EPSILON);
9 assertEquals(101.0, s2.getMaxY(), EPSILON); // This

assertion fails, s2.getMaxY() equals to 102.0
10 }

Fig. 2: The failing test case of bug Chart-3.

In the buggy version, when being copied, minY and maxY are
assigned with values in double.

The correct patch is to correctly assign initial values to maxY
and minY (line 33-34). A plausible machine-generated patch
(line 23-24) modifies a condition in removeAgedItems
to be always true so that findBoundsByIteration will
always be executed. Hence, the plausible patch will have
similar effects as the correct patch in some cases. However, the
plausible patch and correct patch still result three differences.
We will use the test case shown in Figure 2 to explain the three
differences. In the test case, three data instances are added (line
3-5). A copy of TimeSeries is created with the data added
in line 3-4. maxY in line 9 should be 101.0 instead of 102.,
and this causes the assertion to fail.

The first difference is whether the values of minY and maxY
are correct before the second execution of add in line 41.
Although the plausible patch modifies the condition in line 24
to be always true, whether line 26 (i.e., the key to make the
failing test case pass) will be executed or not still depends
on the condition in line 20 (i.e., false when only zero or
one data is added). Since there are totally two executions
of add in this test case, the program invariants inferred at
entering add can summarize the two executions. In fact, in
both the buggy and incorrectly-patched version, the invariant
“this.maxY == 102.0” is inferred at the program point of
entering the method add. However, this invariant represents
an incorrect specification since the correct value of this.maxY
should be 101.0. As a result, from the correctly-patched
version, a different invariant is inferred (i.e., “this.maxY is
one of {100.0, 101.0, Double.NaN}) for the same program
point.

The second difference is for the given test case in Figure 2,
whether or not executing removedAgedItems will update
minY and maxY. In both the buggy and correctly-patched ver-
sions, this update will not happen in removedAgedItems:
there is no update in the buggy version, and the up-
date will happen in updateBoundsForAddedItem. Dif-
ferently, the plausible patch performs the updates in
removedAgedItems. This difference is reflected by the
different invariants generated at the program point of ex-
isting method removeAgedItems. In the buggy version
and correctly-patched version, there are invariants such as
“this.maxY == orig(this.maxY)”. However in the incorrectly-

TABLE I: Summary of the Studied Dataset

Project Bugs Correct Patches Plausible Patches

Lang 12 12 13
Math 45 45 62
Chart 14 14 20
Mockito 2 2 1

Total 73 73 96

patched version, this invariant is violated and a different but
relevant invariant is inferred “this.maxY <= orig(this.maxY)”.
The pair of the violated and newly-inferred invariants indicate
that this.maxY has been updated in the incorrectly-patched
version of removeAgedItems.

The third difference is that extra computations of
findBoundsByIteration (line 26) due to the change of
the condition (line 25-26) by the plausible patch. However,
this is not reflected by any modified invariants.

In summary, although the plausible patch appears to have
similar behaviours to the correct patch (i.e., making the
failing test case pass), their impacts on runtime behaviours are
different. More importantly, such modified runtime behaviours
can be captured by abstractions of runtime behaviours such as
inferred program invariants.

III. EXPERIMENT METHOD

In this section, we describe the dataset that we analyzed in
this empirical study, the method we followed to conduct the
experiments including applying Daikon [21] on the patched
software and computing the differences in the generated in-
variants.
Data Collection. We conduct this study using bugs from
Defect4J dataset [22]. Defect4J is widely used for bench-
marking automated program repair techniques and mutation
testing techniques. Note that our study does not include every
bug in Defect4J, but only the bugs that there exists at least
one machine-generated patch from one of the six test-based
APR techniques. We use the set of machine-generated patches
collected by Xiong et al. [15]. We excluded the bugs from
Closure project because running Daikon on Closure test cases
constantly produces time out errors.

In total, our study includes 73 bugs from four open-source
projects, 73 correct patches (either by APRs or by developers),
96 plausible patches from one of the six APR techniques,
i.e., jGenProg [23], jKali [13], two versions of Nopol [24],
HDRepair [25], ACS [3]. Our study focuses on comparing
one plausible machine-generated patch and its corresponding
correct patch of the same bug. Therefore we only perform
the study on the bugs where at least one plausible patch is
generated by one of six APR techniques. We include both
the correct patches from developers and from APRs, therefore
each bug in our study has at least one correct patch. We
manually examine all the patches and remove the duplicate
ones. The remaining patches are all semantically distinct.
There exist some plausible patches that we are not able to



reproduce in our experiment, i.e., seven patches from APRs
cannot make all test cases pass. In the current study we
excluded them from this study.

Table I shows the details on the dataset in our study. In total
our study contains 73 bugs from Defect4J, 73 correct patches
from both APRs techniques and developers, and 96 distinct
plausible patches from APRs techniques.
Invariant Generation. We utilize Daikon [21] to infer pro-
gram invariants in our study, which is a widely adopted
invariant generation engine. Daikon instruments a program,
record runtime data when test cases are being executed, and
infer program invariants at certain program points, such as
entering and exiting methods. As we expect that patches
(either incorrect or correct) may impact runtime behaviours of
passing and failing test cases differently, we applied Daikon
to generate invariants for passing and failing test cases sep-
arately. However, it is possible that passing test cases may
contain erroneous program executions, and therefore should be
grouped with failing test cases for invariant generation. The
erroneous executions in passing test cases are not revealed
due to insufficient test cases. As future work, we plan to
examine the passing test cases and explore methods to identify
erroneous program executions from passing test cases.

Running daikon can be extremely time-consuming. To speed
up the process and reduce unnecessary computation, we lever-
age test coverage to select a subset of test cases that likely
expose different invariants caused by patches. In particular, if
a test case covers the code modified by a patch, this test case
will be selected for inferring invariants.
Differencing the Inferred Invariants Between Versions.
To quantify the affected runtime behaviours by a patch, we
calculated the differences of the generated invariants between
two versions, i.e., a buggy and a patched version. The patched
version is either a correct patch or a plausible patch, both of
which can make all the test cases pass. Differencing invariants
is based on differencing the invariants of each identified
program point. Examples of program points include procedure
entries and exits, and accessing static variables of a class. In
this study, we use a simple differencing method to compare the
inferred invariants of two versions, i.e., buggy and correctly-
patched versions, and buggy and incorrectly-patched versions.
We calculate two sets: a set of invariants exist in a buggy
version but not exist in a patched version (i.e., a set of violated
invariants, vio-inv for short), and invariants that exist in a
patched version but not in a buggy version (i.e., newly-inferred
invariants, new-inv for short). Specifically, if one invariant of
a program point exists in the buggy version, but the same
program point in the patched version does not contain this
invariant based on string comparison, this invariant is marked
as one of the differences, i.e., part of vio-inv. On the contrary,
a patched version may contain invariants that do not exist in
the same program point of the buggy version, this invariant
is new in the patched version, i.e., part of new inv. We plan
to incorporate advanced differencing methods on invariants
such as implication distance and string distance metrics [20]
to better quantify the differences between invariants.

IV. RESULTS

In this section, we present the results to answer the four
RQs. The conclusions are based on our analysis on 73 bugs
and 169 patches to fix these bugs (73 correct ones and 96
plausible ones by six test-based APR techniques).

RQ1: Invariants Affected by Correct Patches

Motivation. Patches modify program semantics and therefore
unavoidably affect the generated invariants. One may expect
that invariants generated based on failing test cases would be
affected significantly by correct patches. On the contrary, the
affected invariants on passing test cases may be much less
significant and quite minimal. In this RQ, we examine that
to what extent, a correct patch may impact program semantics
based on the affected invariants. Since the generated invariants
highly depend on test cases, we study the impacts separately
for passing and failing test cases.
Results. Table II summarizes how correct patches from the
four studied open-source projects affect the generated invari-
ants from both the passing and failing test cases. Each correct
patch will be placed in one of the four categories, which come
from the combinations of the two conditions: whether vio-inv
is empty and whether new-inv is empty. How we calculate vio-
inv and new-inv is described in Section III. Among the four
categories, if both new-inv and vio-inv are empty, it means that
a patch does not impact the executions of test cases (failing
or passing) at the level of program invariants.

On one hand, we find that for 72/73 of the studied correct
patches, correct patches do have impact on the generated
invariants from failing test cases. Some invariants on a buggy
version are violated due to program changes. A patched ver-
sion may have additional invariants that cannot be concluded
in the buggy version, such as newly executed code in the
patched version. Since a correct patch makes the failing test
cases pass, it is likely to have impacts on runtime behaviours,
and such modified runtime behaviours are mostly captured by
the abstraction level invariants.

On the other hand, many of the correct patches also have
impacts on the generated invariants (43/73) from passing test
cases. It is likely that correct patches may not affect too much
on the inferred invariants from the passing test cases. However
it is also possible that there exist erroneous program executions
in passing test cases that should be identified and grouped
into failing test cases instead. Erroneous program executions
do not lead to test case failures due to weak oracles. Such
erroneous program executions could be the reasons behind that
we find many correct patches affect passing test cases. Also,
some of the generated invariants may be related to runtime
dependencies and are likely to change for a different run.

As a future extension, we will perform a qualitative analysis
to understand the reasons behind and design techniques to
identify the more “relevant” invariant changes.



TABLE II: Comparing the invariants generated on a buggy version and a correctly-patched version.

Passing Test Cases Failing Test Cases
new-inv is empty new-inv is not empty new-inv is empty new-inv is not empty

Lang (12 patches)
vio-inv is empty 4 0 0 3
vio-inv is not empty 0 8 0 9

Math (45 patches)
vio-inv is empty 20 3 1 2
vio-inv is not empty 0 22 0 42

Chart (14 patches)
vio-inv is empty 6 0 0 2
vio-inv is not empty 0 8 0 12

Mockito (2 patches) 0 0 0 0
vio-inv is not empty 0 2 0 2

TABLE III: Comparing the invariants generated on a buggy version and the version with one plausible patch by APRs.

Passing Test Cases Failing Test Cases
new-inv is empty new-inv is not empty new-inv is empty new-inv is not empty

Lang (13 patches)
vio-inv is empty 3 0 1 5
vio-inv is not empty 0 10 1 6

Math (62 patches)
vio-inv is empty 28 1 0 0
vio-inv is not empty 2 31 0 62

Chart (20 patches)
vio-inv is empty 4 0 0 1
vio-inv is not empty 0 16 0 19

Mockito (1 patches) 0 0 0 0
vio-inv is not empty 0 1 0 1

RQ2: Invariants Affected by Incorrect Patches by APR tech-
niques

Motivation. In this RQ, we investigate the impacted invariants
by each plausible patch. Plausible patches are essentially
incorrect patches, e.g., making the failure symptom disappear
instead of actually fixing a bug. As such, it is expected
that a plausible patch should impact the invariants generated
from failing test cases since the failure symptom is removed.
Different from a correct patch, a plausible patch may also
modify correct program behaviours, which may be reflected
by invariants from passing test cases.
Results. Table III shows a summary of to what extent,
plausible patches may impact the generated invariants from
either passing and failing test cases. In short, among all the
96 plausible patches in our study, all but one show impacts
on the generated invariants from failing test cases. From the
side of passing test cases, 60 of the plausible patches show
impacts on the generated invariants. By comparing with the
results of RQ1, we find that more of the plausible patches
have impacts on the executions of passing test cases and such
impacts are reflected by the inferred invariants. It is possible
to utilize the different impacts to identify plausible patches. In
the future, we will qualitatively analyze and uncover case-by-
case and propose techniques to automatically identify plausible
patches.

RQ3: The Scope of Invariants Affected by Test-Passing Patches

Motivation. Invariant generation can be very expensive, espe-
cially when there are many test cases. In this RQ, we study for
how many program points, patches (either correct or plausible)
modify the inferred invariants. If the scope of impact is a
small percentage, this indicates that we can further speed up
the process by limiting the program points being monitored.
If the scope is a large percentage, meaning that to reduce the
overhead of invariant generation, it requires to select some
program points which may be most helpful in identifying
plausible patches.
Results. We study the scope of the affected invariants, whether
they are limited to the buggy class and method (i.e., the
methods and the class modified by the patches) or are ex-
panded to other related methods. In particular, for each version
and different sets of test cases (i.e., passing and failing) we
calculate a ratio of impacted program points out of the total
number of covered program points. Note that we already
exclude the test cases that do not cover the modified code
in invariant generation. Figure 3 shows the ratio of program
points where the generated invariants show differences for
each of the studied projects. In short, we find that on average,
the impact ratio is between 0.7 and 0.8 under different settings,
i.e., passing or failing test cases, correct or plausible patches.
This shows that a significant portion of program points are
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Fig. 3: The ratio of the program points where the invariants are
affected by test-passing patches.

affected by test-passing patches even though the patches may
only modify one method. This also indicates that there is still
some space but not too many to further speed up the process
by limiting the instrumentation to certain program points. In
addition, limiting to only the program points that are modified
by patches may miss a significant portion of invariants that
are impacted differently between versions.

RQ4: Comparing Correct and Plausible Patches on the Af-
fected Invariants

Motivation. Since a plausible patch shows similar behaviours
with correct patches at coarse-grained level, i.e., making all
the test cases pass, it is possible that the affected invariants
by a correct patch would be similar to those by a plausible
patch. If they are identical, it means that we cannot distinguish
one from the other. However, if they are often not identical,
which means that a plausible patch often impacts invariants
differently compared to a correct patch, it is potential to utilize
the affected invariants to correctly identify plausible patches.
Results. For the 96 studied plausible patches, we compare
each of them with a corresponding correct patch with respect
to whether the affected invariants by the two patches are
identical. Similar to RQ1 and RQ2, for each plausible patch,
the comparison is performed separately for both passing and
failing test cases. For example, one plausible patch for a
bug may have the same set of affected invariants with the
correct patch, but have a different set of affected invariants
with the correct patch. In short, if a plausible patch shows
no difference in affected invariants with the correct patch
under both settings, i.e., passing and failing test cases, then
we conclude there is no way to tell the differences between
them based on affected invariants. This sets an upper limit of
how many plausible patches can be identified using invariants.

Our study finds that among the 96 plausible patches,
only four patches shows no distinction in affected invariants
with their corresponding correct patch. This indicates that
invariants have great potential to be leveraged in filtering out
plausible patches and improving APR techniques.

In addition, we examine the percentage of useful affected
invariants among all the affected invariants by each plausible
patch. A portion of affected invariants are useful if they
are not affected by the correct patch. If the percentage of
useful invariants is higher, the plausible patch modifies runtime
behaviours differently compared to the correct patch. Figure 4
shows the percentage of useful invariants of 96 plausible
patches. In addition to separating failing and passing test cases,
we also separate the two types of affected invariants: vio-
inv and new-inv. The results show that the portion of useful
invariants based on passing tests are constantly higher than
failing tests. In most of the cases (except for CHART on failing
tests), vio-inv typically has a similar portion of useful affected
invariants compared to that of new-inv. Overall both vio-inv
and new-inv show promising results to distinguish plausible
patches from correct ones, i.e., the median portion of useful
invariants is at least 50% across the four projects.

Despite the potential, there exists a significant portion of
affected invariants that are shared between a correct patch
and a plausible patch. This poses challenges to correctly
distinguish the two types: correct and plausible. Our extension
will include an in-depth analysis to reveal more comprehensive
information on the shared and non-shared affected invariants
between a correct and a plausible patch.



Fig. 4: The portion of useful invariants under different settings.
Useful invariants are the affected invariants that are exposed by
plausible patches, however not by correct patches.

V. RELATED WORK

Many APR techniques [2, 1, 13, 25, 26, 27, 11, 28, 29]
are proposed in the last decade. Such test-based APR tech-
niques rely on readily-available test cases for patch validation.
However, test cases are largely insufficient [13], hence APR
techniques may generate plausible patches. A recent study by
Cambronero et al. [30] shows that plausible patches does not
help developers in bug fixing.

Various techniques are proposed to improve test-based
APRs by identifying plausible patches [31, 17, 16, 32, 15].
Such techniques either rely on building repair models (i.e.,
manually-crafted patch antipatterns, or prioritizing likely cor-
rect patches in the search spaces), or enhancing test cases
(i.e., new test input, improved test oracles). In this paper,

we present a preliminary study that sheds light on a differ-
ent direction, i.e., utilizing dynamically-generated invariants
from the readily-available test cases. Our preliminary results
show that assesing the affected invariants for the purpose of
distinguishing plausible patches from correct ones has great
potential. Despite the great potential, our study also shows
that it might be challenging to achieve this objective since the
affected invariants by plausible patches often share a common
part with those by correct patches. Our future extension will
include a qualitative analysis on the affected invariants to
reveal more inspirations for designing an automated solution.

Program invariants are abstraction of runtime behaviours
and can be utilized to benefit many software engineering
tasks. Prior work on utilizing invariants includes to improve
test suites [19], to check the upgrades of software com-
ponents [33], to support refactoring [34], and to improve
mutation testing [35]. Different from previous studies, we
apply invariant generation in a new context – automated
program repair. Compared to a recent study by Cashin et
al. [20], which uses invariants for understanding automatically-
generated patches, our study focuses on studying how the
affected invariants differ between versions.

VI. THREATS

Internal Threats. Our computation of new-inv and vio-inv
is coarse-grained and does not consider the relation between
two invariants. For example, the two invariants “this.maxY ==
orig(this.maxY)” and “this.maxY <= orig.(this.maxY)” from
the illustration example are viewed as two distinct invariants
instead of relevant ones.
External Threats. Our study is limited to Defect4J dataset
and six test-based APR techniques. Therefore, the conclusions
may not be generalizable to new bug dataset and other APR
techniques. Our study is limited to Java bugs in Defect4J.
Construct Threats. Our study is based on comparing inferred
invariants during test case executions. Inferred invariants can
be viewed as an abstraction of runtime behaviours, however it
does not reflect every aspect of runtime behaviours, e.g., local
variables are not recorded for invariant generation.

VII. CONCLUSIONS

Test-based APR techniques may generate plausible patches
due to inadequate test cases. In this work, we examine and
explore the differences between a plausible and a correct
patch for the same bug from the perspective of abstractions
of runtime behaviours, i.e., represented as invariants. Our
preliminary study shows that invariants from failing test cases
are very often affected by both correct and plausible patches.
Our study highlights the potential to utilize dynamically-
generated invariants in identifying plausible patches.
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