
Towards Better Utilizing Static Application Security
Testing

Jinqiu Yang
Computer Science and Software Engineering

Concordia University, Canada
jinqiuy@encs.concordia.ca

Lin Tan
Computer Science

Purdue University, USA
lintan@purdue.edu

John Peyton, Kristofer A Duer
HCL, USA

john.peyton, kristofer.duer@hcl.com

Abstract—Static application security testing (SAST) detects
vulnerability warnings through static program analysis. Fixing
the vulnerability warnings tremendously improves software qual-
ity. However, SAST has not been fully utilized by developers due
to various reasons: difficulties in handling a large number of
reported warnings, a high rate of false warnings, and lack of
guidance in fixing the reported warnings.

In this paper, we collaborated with security experts from a
commercial SAST product and propose a set of approaches (Priv)
to help developers better utilize SAST techniques. First, Priv
identifies preferred fix locations for the detected vulnerability
warnings, and group them based on the common fix locations.
Priv also leverages visualization techniques so that developers
can quickly investigate the warnings in groups and prioritize
their quality-assurance effort. Second, Priv identifies actionable
vulnerability warnings by removing SAST-specific false positives.
Finally, Priv provides customized fix suggestions for vulnerability
warnings.

Our evaluation of Priv on six web applications highlights the
accuracy and effectiveness of Priv. For 75.3% of the vulnerability
warnings, the preferred fix locations found by Priv are identical
to the ones annotated by security experts. The visualization
based on shared preferred fix locations is useful for prioritizing
quality-assurance efforts. Priv reduces the rate of SAST-specific
false positives significantly. Finally, Priv is able to provide fully
complete and correct fix suggestions for 75.6% of the evaluated
warnings. Priv is well received by security experts and some
features are already integrated into industrial practice.

Index Terms—static security application testing, static bug
detection, utilization of software engineering tools, software
reliability

I. INTRODUCTION

Static analysis techniques are widely used in practice to
ensure the quality of software [1], [2]. In particular, developers
often rely on static application security testing (SAST) tech-
niques to detect security vulnerabilities. SAST performs static
program analysis for finding software vulnerabilities, and is
different from dynamic approaches that requires penetration
tests. Hence, SAST is able to detect potential vulnerabilities
that remain uncovered after in-house testing. SAST has been
shown to be effective in improving the security of applica-
tions [3], [4], [5].

Aside from research prototypes [3], [6], [7], there are
many popular commercial SAST products, such as AppScan
Source [8], CheckMark [9], and Fortify [10]. However, as
shown in previous studies [11], [12], developers often en-
counter many challenges when using static bug detection

techniques, which results in underuse of SAST techniques. We
have been working with security experts from AppScan Source
for the past three years. Together with the security experts, we
identified several challenges that prevent developers from fully
utilizing SAST techniques.

First, SAST techniques usually detect a large number of vul-
nerability warnings with insufficient support to help developers
prioritize their quality-assurance effort (i.e., time and resources
spent to fix the reported vulnerability warnings). Current
SAST techniques categorize the detected vulnerabilities based
on various factors (e.g., severity, confidence, vulnerability
type, etc.). However, such categorization does not prioritize
developers’ quality-assurance effort based on the commonality
among the detected warnings [11], [12]. One commonality is
the preferred fix location (pFixLoc), which may be commonly
shared by many warnings. Applying the fix at one pFixLoc
will eliminate multiple warnings. Second, similar to static
bug detection, SAST techniques produce many false warnings:
many detected warnings are not true vulnerabilities, and hence,
do not require developers’ effort for fixing. A high rate of
false warnings makes developers lose interests in the detection
results [11]. Finally, SAST techniques often do not offer
fix suggestions on how to fix the detected warnings. SAST
techniques may provide generic guidance, i.e., one remediation
page for one type of vulnerability warnings. However, such
generic guidance only provides high-level information, but
lack of specific information which varies for each vulnerability
warning.

Therefore, to address the above-mentioned challenges that
developers may encounter when using SAST techniques, we
work closely with security experts and propose a set of
approaches to improve current SAST solutions. We implement
the approaches as a tool, named Priv. Priv is well-received
by security experts and some features are already integrated
into commercial products. In this paper, we discuss how we
leverage visualization and code analysis to build Priv upon a
mature SAST product (AppScan Source). We also illustrate
the usage and effectiveness of Priv in improving the usability
of SAST techniques.

The prototype of Priv targets the most prominent vul-
nerability types [3]: cross-site scriptings (XSS), SQL in-
jections (SQLi), path traversals (PATHtrv), command injec-
tions (COMMi), and second-order injections (SECi). A prior

study [13] shows that cross-site scriptings, SQL injections, and
parameter tampering are accounted for more than one-third of
web application attacks. We applied Priv (+ AppScan Source)
on one closed source (i.e., AltoroJ, an internal testing applica-
tion for evaluating AppScan Source) and five open-source web
applications (WebGoat, JavaVulnerable Lab, Vulnerable Web,
Bodgeit, and HeisenBerg) that are commonly used for study-
ing security vulnerabilities and evaluating SAST techniques.
The evaluation shows that Priv automatically finds preferred
fix locations that are identical to developers’ annotated fix
locations for 75.3% of the evaluated vulnerability warnings.
A global-view visualization based on the pFixLocs is useful
in guiding developers to prioritize quality-assurance effort.
Moreover, Priv can reduce the rate of SAST-specific false
positives from 14.8%–88.6% to 0. Finally, Priv can provide
customized fix suggestions for the evaluated vulnerability
warnings: fully complete and correct for 75.6% of them,
partially compilable/correct for 4.2% of them, and fix template
only for 2.01% of them.

The main contributions of this paper are:

• We proposed a set of approaches to help developers better
utilize SAST techniques.

• We provided an implementation of the proposed ap-
proaches in Priv, which is built upon a mature commer-
cial SAST product–AppScan Source.

• We evaluated Priv on six web applications and show
that Priv can help prioritize developers’ quality-assurance
effort, reduce false warnings, and provide customized fix
suggetions for vulnerability warnings.

• Priv is currently in the process of being integrated into
industrial practice, and some developed features are al-
ready offered to customers of AppScan Source.

Paper organization. The rest of the paper is organized as
follows. Section II describes the background of one commer-
cial SAST technique–AppScan Source. Section III discusses
three challenges that developers may encounter when using
SAST, their impact, and our solutions (Priv) to mitigate
the challenges. Section IV describes our evaluation of Priv.
Section V describes internal and external threats. Section VI
surveys related work. Finally, section VII concludes the paper.

II. BACKGROUND OF APPSCAN SOURCE

AppScan Source [8] is one of the leading commercial
SAST products. AppScan Source presents detected vulnerabil-
ity warnings to developers in a list and also provides different
ways to categorize vulnerability warnings (e.g., severity).
When developers click on one of the presented vulnerabil-
ity warnings, AppScan Source will show the details of the
warning (as shown in Figure 1). Figure 1 includes three main
components: the data-flow path of the vulnerability warning
(left-top component), a window to show relevant code (left-
bottom component), and a remediation page to show generic
guidance on how to fix this vulnerability type. AppScan Source
stores the details of the warnings in assessment files. We built
Priv by analyzing such assessment files.

Typical SAST techniques target information-flow vulner-
abilities. An information-flow vulnerability starts with an
incoming untrusted input (i.e., the source in a data-flow
path, such as getParameter(...) in Figure 1) and ends
at code that performs security-critical functionalities (i.e.,
the sink in a data-flow path), such as executing SQL
queries (executeQuery(...) in Figure 1). For example, SQL
injections are caused by writing unsanitized inputs that
contain malicious activities to a database. The unsani-
tized input may come from web API calls (e.g., through
a method call javax.servlet.http.HttpSession.getAttribute in
Java), and being passed to database execution APIs (e.g.,
java.sql.Statement.executeUpdate).

We use an example of SQL injection to explain the represen-
tation of a data-flow path (also referred to as trace) in AppScan
Source (the top-left component in Figure 1). The trace marks
source and sink in red color. The source calls getParameter(...)
to obtain input from an HTTP request. Such input may
be malicious, and thus is considered as an untrusted input.
The sink executes a SQL query to the database (i.e., using
java.sql.Statement.executeQuery). The other nodes in the trace
show how the untrusted input is propagated from the source
to the sink. For example, the blue node on top (namely root
caller), i.e., method doPost, calls getParameter and passes
the obtained parameter value to the sink through method
getUserInfo. Since the data flow between the source and
the sink does not validate the untrusted input and the sink
does not call PreparedStatement, this data flow is detected as
a potential SQL injection vulnerability by AppScan Source.

III. CHALLENGES, IMPACT AND SOLUTIONS

In this section, we discuss the challenges that prevent
developers from fully utilizing SAST techniques, the resulting
impact, and our proposed solutions.

C1: Handling a large number of vulnerability warnings
Description. SAST techniques may detect hundreds or even
thousands of vulnerability warnings in one application. All
the detected warnings are presented to developers, and de-
velopers need to investigate them one-by-one. Developers
receive limited support to have an overview of all the detected
warnings, especially in a way that focuses on commonality,
so that developers can prioritize their quality-assurance effort.
Moreover, when working on one warning (i.e., the target
warning), the developer may not know the impact of fixing
this warning on other warnings, especially when the target
warning share commonality with other warnings.
Impact. Developers are overwhelmed by the large number of
vulnerability warnings detected by SAST. Failing to identify
common problems shared by multiple vulnerability warnings
leads to inefficiency in developers’ quality-assurance effort.
Moreover, commonalities among vulnerability warnings may
indicate complications in how to fix them. For instance,
adding sanitizing code at one code location may introduce
side-effects. Such side-effects at common code location may

Fig. 1: For each vulnerability warning, AppScan Source shows the trace (i.e., to visualize the data-flow from source to sink),
a code window to show the code snippet of one trace node (i.e., clicked by the user), and a generic remediation page (e.g.,
text description, examples of buggy code and fix).

improperly obstruct all the data-flow paths that cover the
common code location.
Proposed Solution. To help developers efficiently resolve
vulnerability warnings, we first propose an approach to iden-
tify the preferred fix locations (namely pFixLocs) for the
warnings (e.g., adding a fix at one location can resolve the
maximum number of warnings). Then we propose a global-
view visualization that leverages the commonality in pFixLocs
and presents the detected vulnerability warnings in groups,
i.e., warnings in the same group share the pFixLocs. The
visualization also highlights the complex interferences among
groups. Below, we discuss the solutions in detail.

1) Finding preferred fix locations: For an information-flow
vulnerability (as described in Section II), there may exist
multiple code locations that developers can add a fix (e.g.,
code to validate untrusted input) to mitigate the security risk.
To reduce code maintenance effort and manual effort (e.g.,
debugging and creating fixes), developers may prefer to add
validation code at the most effective code location, where
applying one fix can resolve a large number of vulnerability
warnings. Such cost-effective fix location is referred to as
preferred fix location (pFixLoc). Priv finds pFixLoc for four
types of vulnerability warnings: SQL injection (SQLi), cross-
site scripting (XSS), command injection (COMMi), and path
traversal (PATHtrv).

Combining security experts’ years of experience, we make
the following strategy to find pFixloc for warnings. A data-
flow path contains a source (i.e., where the input comes in),
a sink (i.e., where the input become exploitable), a root caller
(i.e., an indirect caller of both source and sink), and other
nodes (i.e., either callers of the source or callers of the sink).

• For XSS, Priv finds three types of pFixLocs: the source,
the direct caller of the source in the data-flow path, and

Java classes that occur in the first half of the data-flow
path (i.e., from the source to the root caller).

• For SQLi, COMMi, and PATHtrv, Priv finds three types
of pFixLocs: the sink, the direct caller of the sink in the
data-flow path, and Java classes that occur in the second
half of the data-flow path (i.e., from the root caller to the
sink).

We derived the rule-based strategy to find pFixLoc for the four
above-mentioned vulnerability types. The rule-based strategy
is proposed based on years of experience from the senior
AppScan Source security experts. There are two factors that
security experts and we consider when deriving the rule-based
strategy for suggesting pFixLoc. The first factor is to maximize
the fixing ability of pFixLoc. A pFixLoc is preferred if adding
a fix at this pFixLoc resolves more vulnerability warnings. The
second factor is to minimize the side effects that are introduced
by adding validation code at pFixLoc. Such side effect refers to
the impact of validation code on other data-flow paths that also
go through the same pFixLoc. By considering the first factor
only, pFixLoc should be as close to the source as possible (i.e.,
where untrusted data goes in) to maximize the fixing ability.
Also, security experts from AppScan Source proposed the idea
of validating Java classes (e.g., when initializing class fields),
which also provides good fixing ability as it may cover all
the data-flow paths where the Java object occurs. Considering
the second factor, pFixLoc is preferred to be close to the sink,
because the validation added at the sink (which is the end
of the data-flow path), is less likely to introduce side-effect
to other data-flow paths. Figure 2 shows an example trace
for a cross-site scripting. The root (_jspService) gets un-
trusted input from the source (getString()) through the call
chain that includes getBankUsers and getBankUsernames.
Then, the root passes the unsanitized data to the sink

Fig. 2: An example trace of a cross-site scripting vulnerability.

(JspWriter.print()). The unsanitized data, if it contains
a malicious script, will be executed by a victim’s browser.
Priv finds the following pFixLoc for this cross-site scripting:
the source, the direct caller of the source, and Java objects
that occur in the path from the source to the root caller.
Priv highlights a list of potential pFixLocs, and does not
make the final decision about where to fix. Instead, Priv uses
the found pFixLocs to provide a global-view visualization to
help developers decide the fix location for each vulnerability
warning.

2) Grouping and visualizing vulnerability warnings based
on shared pFixLocs: Priv applies a force-directed graph [14]
to group and visualize all the detected vulnerability warnings
in one application. In particular, a node represents either
a vulnerability warning (vul-node) or a pFixLoc (pFixLoc-
node). There exists a link between a vulnerability warning
and all of its identified pFixLocs. Force-directed graph drawing
algorithm requires no prior knowledge of the graph layout and
tries to limit crossing links as few as possible. The force-
directed graph algorithm centers vul-nodes around related
pFixLoc-nodes, and pushes away the vul-nodes that are not
linked to the centered pFixLoc-node. Therefore, using the
force-directed graph drawing algorithm, Priv naturally groups
vulnerability warnings based on shared pFixLocs and also
presents a visualization.

Figure 3 shows an example of the global-view visualization
that Priv generates for WebGoat 5.3. The visualization con-
tains several groups: some complicated groups (e.g., the top-
left group), and some simple yet large groups (e.g., the bottom-
left group). This global-view visualization guides developers
to work on the large groups for prioritizing quality-assurance
effort, and informs developers that there are interferences
between vulnerability groups, such as the complicated group
on the top-left corner in Figure 3. In particular, when de-
velopers navigate vulnerability warnings in groups, they can
observe that a fix added to one particular pFixLoc may
potentially fix all the vulnerability warnings in the same group.

Fig. 3: Priv provides the global-view visualization for Web-
Goat 5.3. Rectangles with various colors represent different
types of vulnerability warnings. Circles present trace nodes.
Blue (both light and dark) circles are the pFixLocs. Orange
circles are the trace nodes other than pFixLocs. This visu-
alization is interactive: When developers click on one node,
more detailed information will be shown.

Developers may select the group with the most warnings
for prioritizing quality-assurance effort. Finally, developers
become aware of potential side-effects of placing validation
code as the interferences among groups are presented to them.
For example, if a whitelist-based validation code is added to
one fix location, and this fix location may be in the data flow
of other vulnerability warnings, developers should be alerted
about the potential side-effect introduced by this fix.

C2: Having a large number of false positives in the SAST
detection result
Description. Similar to static bug detection [11], SAST also
reports a large number of false positive warnings, which
are not real vulnerabilities and do not require developers’
attention. There are two types of false positives in SAST
techniques: false positives introduced by limitations of static
analysis (e.g., infeasible paths), and SAST-specific false pos-
itives due to incomplete information flows related to stored
injections. A solution that identifies SAST-specific false posi-
tives can help developers focus on the actionable warnings.
Impact. High false positive rate decreases developers’ in-
terests in the detection result and hence makes SAST less
useful. Time and resources are wasted in investigating false
warnings while true vulnerabilities may remain unfixed even
after extensive quality-assurance activities.
Proposed Solution. There exists prior effort to detect false
positives in static bug detection [15], [16], [17]. In this work,
we focus on reducing the number of SAST-specific false
positives. We first describe SAST-specific false positives in
detail, and then describe our solution which is based on
establishing a complete data flow from two incomplete data
flows.

SAST-specific false positives are related to stored injections

(i.e., second-order injections). Security experts from AppScan
Source point out two primary types of stored injections that
result in many false positives: database-related (DB-related)
injections and attribute-related (attr-related) injections. DB-
related injections are about storing untrusted input in the
database. However, such injections only become real threats
when the stored input is actually exploited (e.g., being exe-
cuted). A DB-related injection is actionable if the stored data
is later used in database queries (i.e., causing SQL injections)
or in websites (i.e., causing cross-site scriptings). Similarly,
actionable attr-related injections are about storing untrusted
input in JSP (JavaServer Pages) attributes, which later become
exploitable.

Priv identifies actionable DB- and attr-related vulnerabilities
by connecting two related data flow paths, each of which
is incomplete and shows only half of a complete data flow.
The first half data flow is from an entry point of untrusted
data to where the data is stored (entry path); and the second
half is from where the data is stored to where the untrusted
data is exploited (exit path). Priv first finds entry paths where
the sink writes to a database or JSP attribute, and exit paths
where the source reads from a database or JSP attribute.
Then, Priv connects one entry path and one exit path if they
read from or write to the same database table or the same
JSP attribute. Priv automatically extracts the name of JSP
attribute by using regular expressions since the name of an
attribute is often string literals. Priv asks developers to specify
database table name. Automatically extracting database table
name remains as future work, such as performing semantic
analysis on database-access code (e.g., SQL queries).

C3: Lack of customized fix suggestions
Description. Developers receive insufficient support about
how to fix the detected vulnerabilities. SAST techniques may
provide remediation pages to help developers understand each
type of vulnerability and provide examples to show how to fix
the detected vulnerability warnings. However, such example-
based remediation pages are generic (e.g., one remediation
page for each type of vulnerability), and can be difficult to
comprehend and adapt due to their significant difference with
the detected vulnerability warning.
Impact. Insufficient support in fixing the detected vulnerabil-
ity warnings causes a significant increase in the time that de-
velopers spend in quality-assurance activities [12]. The manual
process of comprehending fix examples and applying them to
new contexts is error-prone, and may lead to inaccurate fixes.
Proposed Solution. Priv leverages manually-derived fix tem-
plates, applies the derived fix templates in new contexts,
and generates customized fix suggestions for the vulnerability
warnings detected by SAST. The fix templates are manually
derived from existing example-based remediation pages, i.e.,
generic fix suggestions (Fig. 4a). In particular, Priv intercepts
the remediation page in AppScan Source, and replaces the
generic fix information with a customized fix suggestion for
each vulnerability warning.

Figure 4a shows the generic remediation page that App-

(a) The remediation page of App-
Scan Source for SQL injections.

(b) Priv presents customized
buggy code and fix suggestios in-
stead of generic ones.

Fig. 4: Priv provides a customized fix suggestion instead of a
generic example-based remediation page.

Scan Source provides for SQL injections. Priv customizes
the generic remediation page by replacing the buggy code
and the fix with customized ones, as shown in Figure 4b.
The example fix code prevents a SQL injection by using
PreparedStatement. A fix template is manually derived
based on the example fix code. The fix code in Figure 4b is a
customized fix suggestion based on the derived fix template,
and is able to prevent a specific SQL injection which contains
more complex semantics than the SQL injection example in
the generic remediation page (Figure 4a).

Priv re-constructs the buggy code and generates the fix
suggestion by analyzing the information in the assessment
file (i.e., the file where AppScan Source stores the detection
result). This demonstrates that Priv can be integrated smoothly
with AppScan Source and does not require changes to the
current implementation of AppScan Source. In particular, Priv
generates fix suggestions for four vulnerability types: cross-
site scriptings, SQL injections, path traversals and command
injections. Fix templates are manually concluded from the
remediation pages of the four vulnerability types. It remains
as future work to automate the process of manually crafting
fix patterns from documentation [18].

IV. EVALUATION

We evaluate Priv on six web applications: five are open
source projects which are commonly used for studying vul-
nerabilities (WebGoat, Bodgeit, VulWeb, JavaVulLab, and
Heisenberg), and one (AltoroJ) is for internal use by the
development team of AppScan Source. Table I shows the
details of the six evaluated web applications. In particular, we
apply AppScan Source + Priv to find vulnerabilities in the six
studied web applications and report changes and improvement
that Priv introduces from the perspective of developers (the
users of AppScan Source).

TABLE I: The summary of the six web applications that
are used in the evaluation. ‘Tot. warnings’ is the number of
warnings reported by AppScan Source.

AltoroJ WebGoat Bodgeit VulWeb JavaVulLab Heisenberg
KLOC 3.7 321 2.6 3 1.5 4

tot. warnings 281 2,215 159 102 2,424 151
XSS 43 239 31 14 2,083 9
SQLi 55 78 5 12 94 16

COMMi 0 7 0 2 0 0
PATHtrv 3 60 0 3 18 4

We aim to answer the following three research questions:
RQ1: What is the accuracy and effectiveness of using

global-view visualization of vulnerabilities?
RQ2: How many actionable database- or attribute-related

vulnerabilities that Priv finds?
RQ3: What is the quality of the fix suggestions provided by

Priv?

RQ1: What is the accuracy and effectiveness of using global-
view visualization of vulnerabilities?
Motivation. The basis of Priv’s global-view visualization
is whether or not a reasonable preferred fix location can
be found by Priv. To assess the accuracy of the suggested
pFixLoc, we compare the pFixLocs found by Priv with the
ones annotated by developers. Moreover, one may wonder how
effective the global-view visualization is in guiding developers
to prioritize quality-assurance effort by working on larger
groups of vulnerabilities first.
Approach. Priv works for four types of vulnerabilities (i.e.,
XSS, SQLi, COMMi, and PATHtrv). We applied Priv to
visualize these four types of vulnerabilities detected in the six
web application (Table I). A comparison-based evaluation is
conducted to assess whether Priv finds reasonable pFixLocs.
Also, we conduct a case study on AltoroJ to illustrate how
the global-view visualization will impact developers’ current
workflow of fixing warnings detected by AppScan Source.

Our collaborators (i.e., security experts from AppScan
Source) provided us their annotated fix locations for vulner-
ability warnings. Since the developers did not annotate the
fix location of every single vulnerability (i.e., the annotation
was for other purposes, not particularly for this evaluation),
we only performed the comparison for a subset of all the XSS
and SQLi warnings: In total, 190 XSS and SQLi vulnerabilities
are included in this comparison. We compared the fix locations
found by Priv with the ones annotated by security experts to
evaluate whether Priv finds accurate preferred fix locations.
Note that this comparison shall not be positioned as whether
Priv suggests better or worse fix locations than that of devel-
opers, but should instead be a comparison which highlights the
similarities and differences between the two. Also, we provide
statistics to show to what extent, the visualization provided by
Priv can help developers prioritize quality-assurance effort.

We defined and utilized the following metrics to answer
this RQ. Similarity is used to measure the percentage of
warnings that Priv can find fix locations that are identical to the
ones annotated by developers. Since Priv may suggest more

TABLE II: Comparison between the fix locations suggested
by Priv and the ones annotated by developers.

AltoroJ WebGoat Bodgeit VulWeb JavaVulLab Heisenberg
XSS

w/ annotations 13 67 22 2 17 7
diff 0 29 11 1 0 0

identical 13 38 11 1 17 7
similarity 13/13 38/67 11/22 1/2 17/17 7/7

100% 56.7% 50% 50% 100% 100%
SQLi

w/ annotations 7 12 5 2 19 16
diff 0 1 0 2 3 0

identical 7 11 5 0 16 16
similarity 7/7 11/12 5/5 0 16/19 16/16

100% 91.7% 100% 0 84.2% 100%

than one fix location for one warning, we consider that Priv
suggests identical fix location if any of the suggested pFixLocs
matches with the one annotated by the developers (note that
Priv may suggest multiple fix locations and only one is
identical with the developers’ selection, which is measured by
cost). Also, we used two metrics to measure the effectiveness
of pFixLocs found by Priv: reduction and cost. Reduction is
used to measure to what percentage can Priv narrow down the
scope of fix location. For example, one vulnerability warning
may have N code locations in the data flow (i.e., validation
code can be added to one of the N code locations). If Priv
suggests only one pFixLoc, then the reduction of Priv for this
vulnerability warning is (N-1)/N. Cost is the number of unique
pFixLocs suggested by Priv, which measures the cost brought
by Priv’s found pFixLocs since Priv could suggest more than
one fix locations for each vulnerability warning.

To illustrate the effectiveness of global-view visualization,
we conduct a case study using AltoroJ. Global-view visual-
ization guides developers to prioritize quality-assurance effort
by first working on groups that have more vulnerabilities.
Intuitively, investigating the largest group will resolve many
vulnerabilities at once since the vulnerabilities share common
fix locations. We performed a simulated study on AltoroJ with
the assumption that developers will prefer to first work on
the largest group of vulnerability warnings. We sorted the
clusters based on the number of vulnerability warnings. Then,
we estimated the effort of fixing the current largest group using
the total number of suggested fix locations, and also presented
the outcome of such fixing effort (i.e., number of warnings
resolved).
Results. Table II shows the comparison result between the
fix locations suggested by Priv and the ones annotated by
developers. Because the annotation was not particularly per-
formed for this evaluation (i.e., for other development goals),
the warnings in the comparison (Table II) are a subset of all the
XSS and SQLi warnings. Table II lists the number of warnings
with developers’ annotated fix locations, and the comparison
result with Priv’s suggested fix location (i.e., ‘diff’, and ‘iden-
tical’). ‘Diff’ means that the fix locations suggested by Priv
are different from that of developers. ‘Identical’ means Priv
suggests the same fix location as developers. In summary, Priv
achieves a 50–100% similarity when comparing the suggested
fix locations with the ones annotated by developers.

TABLE III: The table shows the statistics of preferred fix
locations suggested by Priv. The table is divided into two
parts: AppScan Source and AppScan Source + Priv. ‘Tot.
warnings’ is the total number of warnings (the four studied
vulnerability types) reported by AppScan Source. ‘Tot. trace
nodes’ is the total number of trace nodes in the studied
warnings. ‘Tot. pFixLocs’ is the total number of pFixLocs
are found by Priv. ‘Reduction’ shows the percentage of ‘tot.
pFixLocs’ in ‘tot. trace nodes’, i.e., reducing the number of
code locations investigated. ‘Cost’ is the average number of
code locations investigated to fix a warning.

AltoroJ WebGoat Bodgeit VulWeb JavaVulLab Heisenberg
AppScan Source
tot. warnings 101 384 36 31 2,195 29

tot. trace nodes 576 1,819 140 234 10,926 168
AppScan Source + Priv
tot. pFixLocs 158 495 36 87 2,297 32

reduction 72.6% 72.8% 74.3% 63.9% 79% 81%
cost 1.66 1.29 1 3.07 1.04 1.10

TABLE IV: The result from a case study on AltoroJ to
show how effective the global-view visualization is in guiding
developers prioritize quality-assurance effort. ‘Order’ shows
the order that developers follow based on size of groups to
incrementally fix all vulnerability warnings from AltoroJ. ‘Cu-
mulative effort’ is the cumulative number of fix locations that
require manual investigation for fixing one cluster. ‘Outcome’
quantifies the result of an effort, i.e., number of warnings
resolved.

order 1 2 3 4 5 6 7 8
cumulative effort 8 12 14 15 16 17 18 19
outcome 41 48 52 54 56 58 60 61
outcome/effort 5.13 4 3.71 3.6 3.5 3.41 3.33 3.21

Table III shows the ability of Priv in reducing the scope
of manual investigation of fix locations. For example, for
AltoroJ, there are 95 warnings of XSS, SQLi, COMMi, and
PATHtrv. For these 95 vulnerability warnings, there are a total
of 570 possible fix locations (i.e., aggregating all the nodes in
data-flow paths). Priv narrows to 152 fix locations. Thus, the
reduction of Priv on AltoroJ is 73.3%, i.e., (570-152)/570.
Table III also shows the cost (i.e., how many fix locations
developers will investigate per vulnerability), which shows that
on average 1.12 fix locations per vulnerability warning are
found by Priv.

Table IV shows how Priv can prioritize quality-assurance
efforts for AltoroJ (one of the evaluated projects). The order
of each column complies with the order that developers follow
based on the assumption (i.e., starting with the largest group).
The first row shows the aggregated number of fix locations
that developers would need to investigate. Correspondingly,
the second row lists the aggregated number of vulnerability
warnings would be resolved after the group at this order
is investigated. The last row shows the average number of
vulnerability warnings that would be resolved per fix location
after each selection of group. For example, when developers
choose to work on the first group (the column when ‘order’

TABLE V: The results of applying Priv to identify actionable
warnings and thus removing SAST-specific false positives.
Priv is able to identify all the actionable warnings and remove
all the SAST-specific false positives.

AltoroJ WebGoat Bodgeit VulWeb JavaVulLab Heisenberg
Database
of total warnings 20 298 35 9 128 16
of actionable warnings 14 233 4 0 109 0
perc. of SAST-specific
false positives 30% 21.8% 88.6% N/A 14.8% N/A
of warnings
reported by Priv 14 233 4 0 109 0
of actionable
warnings by Priv 14 233 4 0 109 0
Attribute
of total warnings 17 13,324 11 0 0 29
of actionable warnings 4 2,170 6 0 0 25
perc. of SAST-specific
false positives 76.5% 83.7% 45.5% N/A N/A 13.8%
of warnings
reported by Priv 4 2,170 6 0 0 25
of actionable
warnings by Priv 4 2,170 6 0 0 25

is 1), 41 vulnerability warnings may be resolved after inves-
tigating eight fix locations. If there is no prioritization, for
each fix location, developers would resolve 3.21 warnings on
average (as shown in the last column in Table IV). With the
prioritization provided by Priv, the average warnings per fix
location are 5.13 to start with, and gradually decreases to 3.21.
This shows that Priv can indeed improve work efficiency by
prioritizing quality-assurance efforts.�

�

�

�

Priv finds identical preferred fix locations when compared
with developers’ annotations for 75.3% of the studied
vulnerability warnings (i.e., ranging from 50% to 100%
per web application). The global-view visualization that
Priv generates for AltoroJ can prioritize quality-assurance
effort, i.e., guiding developer to work on the largest group.

RQ2: How many actionable database- or attribute-related
vulnerabilities that Priv finds?
Motivation. Priv reduces the rate of SAST-specific false
positives by identifying actionable database- and attribute-
related vulnerabilities. Reducing the number of false positives
can maintain developers’ interest in the detection result [12].
This RQ answers how many actionable warnings are identified
by Priv, and, correspondingly, how many SAST-specific false
positives are excluded.
Approach. We applied Priv on the six web application (see
Table I) to identify actionable DB- and attr-related vulner-
abilities. Since Priv requires manual effort to specify the
names of the database tables when analyzing DB-related
vulnerabilities, we manually provided such information in
this evaluation. For the attribute-related warnings, Priv first
extracts the values of attributes if the parameters of relevant
APIs (i.e., getAttribute or setAttribute) are string
literals. If not, Priv then requires manual input to provide such
information. We manually provide the names of attributes if
the first automated method fails to extract such information.
Results. Table V shows the results of applying Priv to iden-
tify actionable database- and attr-related warnings in the six

evaluated web applications. Table V shows the total number
of DB-related or attribute-related warnings, the number of
actionable ones among all the warnings, the percentage of
SAST-specific false positives that are not actionable, and
the number of actionable warnings identified by Priv. The
authors and security experts manually examined the actionable
warnings reported by Priv and found that all of the Priv’s
reported warnings are indeed actionable. In short, Priv is able
to identify all the actionable warnings and thus removing all
the SAST-specific false positives (i.e. reducing SAST-specific
false positive rate to 0%).�

�

�

�

Priv detects a total of 2,565 actionable DB-related or attr-
related vulnerabilities in the six evaluated web applications
after excluding SAST-specific false warnings. Priv reduces
the rate of SAST-specific false positives from 13.8%–88.6%
to 0.

RQ3: What is the quality of the fix suggestions provided by
Priv?
Motivation. Priv provides customized remediation pages that
include customized fix suggestions to fix the detected vulner-
abilities and elevate the burden from developers. Due to the
difficulties in adapting generic fix templates to each detected
vulnerability warning, the customized fix suggestions provided
by Priv can be classified based on the quality. The best-quality
fixes provided by Priv can be directly applied to the source
code (i.e., with complete essential and correct semantics).
Meanwhile, the lower-quality fixes provided by Priv may be
incomplete and still require developers’ manual effort. This
RQ studies for how many vulnerability warnings, Priv can
provide customized fix suggestions. Moreover, we evaluate the
quality of the customized fix suggestions regarding whether
the fix can be directly applied to the source code, and if not,
how much extra effort is required (e.g., minor modifications).
Approach. The authors and the security experts manually
examined the quality of all the customized fix suggestions
provided by Priv, except for XSS in JavaVulnLab (App-
Scan Source finds a total of 2,083 XSS vulnerabilities in
JavaVulnLab, so we took a sample of 100 for manual examina-
tion). To qualitatively evaluate the quality of the fixes provided
by Priv, we classify each fix into one of the three categories:
fully complete and correct, partially compilable/correct (i.e.,
minor modifications required), fix template only (i.e., develop-
ers need to add extra code, such as validation methods). Fully
complete and correct means that one fix that can be directly
applied to the code without modifications, which means the
patched code is compilable and indeed fixes the vulnerability.
Partially compilable/correct means that the suggested fix can-
not be directly applied to the code as the patched code would
be either not compilable or not entirely correct. The fixes
of this category may require minor modifications to become
fully complete and correct. Figure 5 shows an example of
partially compilable/correct fixes that Priv generates for one
SQL injection. The fix is not entirely correct: the patched code
replaces dateString with ‘?’ in line 13 (the unpatched code

1 if (startDate != null && startDate.length()>0 && ...){
2 dateString = "DATE BETWEEN "+startDate+"00:00:00 AND "\
3 + endDate +" 23:59:59";
4 } else if (startDate != null && startDate.length()>0){
5 dateString = "DATE > " + startDate +" 00:00:00"; }
6 – String query = "SELECT * FROM TRANSACTIONS WHERE (" \
7 – + acctIds.toString() + ") " \
8 – + ((dateString==null)?"": "AND (" \
9 – + dateString + ") ") \

10 – + "ORDER BY DATE DESC" ;
11 + String query = "SELECT * FROM TRANSACTIONS WHERE (" \
12 + + "?" + ") " \
13 + + (("?"==null)?"": "AND (" \
14 + + "?"+ ") ") \
15 + + "ORDER BY DATE DESC" ;
16 + query.setString(1, acctIds.toString());
17 + query.setString(2, dateString);
18 + query.setString(3, dateString);
19 + query.setString(4, startDate);
20 resultSet = statement.executeQuery(query);

Fig. 5: A customized fix suggestion provided by Priv for a
SQL injection vulnerability. The fix suggestion is classified as
‘partially compilable/correct’. This customized fix is partially
correct because dateString in line 8 is incorrectly replaced by
? in line 13 since Priv is not able to infer that dateString is
used in a condition.

is in line 8) because Priv fails to identify that dateString is
used in a condition. If dataString is concatenated to a SQL
query, then a correct fix should replace it with a ?.

Fix template only means that a fix is the least complete,
which only contains the skeleton of a fully complete and
correct fix, but lacks concrete implementation (e.g., validation
code to prevent malicious input). For example, to prevent
a path traversal in File file = new File(path) since
path can be malicious and untrusted input, Priv suggests to
validate path, e.g., creating a whitelist-based validation so
that only valid paths are allowed. Priv provides a customized
fix template if(validate(path)) and developers will need
to implement the method validate(...). Even for this lowest-
quality category of Priv’s fix suggestions, Priv still provides
a better customized fix suggestion than a generic fix template,
since the generic fix template will not show that path is the
variable that requires validation.
Results. Table VI shows the results on the quality of the
fixes provided by Priv. Each fix is manually examined by
the authors and security experts, and classified into one of the
three above-mentioned categories.

For the majority of the cross-site scriptings (100% in three
of the evaluated web applications), Priv provides complete
and correct fixes. For 27 cross-site scriptings (21 from Altoroj,
one from Bodgeit, and 5 from JavaVulLab), Priv does not
provide fully complete fixes due to the limited information
stored in the AppScan Source assessment file. Sometimes the
AppScan Source assessment file does not store the original
information about the tainted parameter in the sink; instead,
an intermediate representation is stored. Below is an example
of such cases, which may execute a malicious input:
<%= (request.getAttribute("message_feedback")!=null)?"...%>

In the assessment file, request.getAttribute(...) != null is
stored as Temp@11@0. Thus, Priv is not able to infer that

TABLE VI: The results of manual examination on the quality
of the fixes generated by Priv. N/A means that AppScan
Source detects none of this vulnerability type.

AltoroJ WebGoat Bodgeit VulWeb JavaVulLab Heisenberg
Cross-site Scripting

fully complete and correct 22 239 30 14 951 9
partially compilable/correct 21 0 1 0 5 0

fix template only 0 0 0 0 0 0
SQL Injection

fully complete and correct 42 78 2 0 51 0
partially compilable/correct 6 0 0 0 0 0

fix template only 7 0 3 12 43 9
Path Traversal

fully complete and correct 0 0 N/A 0 0 0
partially compilable/correct 0 0 N/A 0 0 0

fix template only 3 60 N/A 3 18 4
Command Injection

fully complete and correct N/A 0 N/A 0 N/A N/A
partially compilable/correct N/A 0 N/A 0 N/A N/A

fix template only N/A 7 N/A 2 N/A N/A

request.getAttribute() occurs in a condition, and therefore,
incorrectly places request.getAttribute() in a validation
method.

Priv generates fully complete fixes for 70.9% of the eval-
uated SQL injections. The main reason that Priv does not
generate fully complete fixes is that limited information is
stored in assessment files (similar to the cross-site scripting
cases). For the example shown in Figure 5, AppScan Source
uses intermediate variables to represent dateString==null.
Therefore, Priv cannot analyze the condition accurately and
produces a partially correct fix which replaces dateString with
a ‘?’. For all the path traversals and command injections, Priv
provides fixes in the category ‘fix template only’ since the
validation code would require developers’ domain knowledge.�

�

�

�

Priv generates fully complete and correct fixes for 75.6%
of the vulnerability warnings, partially compilable/correct
fixes for 4.2%, and fix templates for 2.1%. Even the least
complete category of ‘fix template only’ is more customized
than the generic fixes in the current remediation pages.

V. THREATS TO VALIDITY

Internal Threats. The preferred fix locations (i.e., the ba-
sis of building global-view visualization) found by Priv are
compared with security experts’ annotation. We believe such
annotation is trustworthy due to the security experts’ years of
experience. However, there could be more than one way to fix
vulnerabilities and sometimes the process is subjective. Future
research should include an extensive user study to obtain
such annotations of fix locations from professional developers.
Also, for each vulnerability type, we only conduct the com-
parison on a subset of all the warnings; however, we believe
developers would follow consistent rules when annotating for
the remaining warnings of the same type. In the future, we
plan to extend the comparison evaluation. Priv is not designed
to identify non-SAST-specific false positives, i.e., caused by
the limitations of static analysis. Therefore, some vulnerability
warnings that are detected by SAST, and analyzed by Priv
can still be false warnings. However, we believe that this
should not negatively impact Priv’s improvement. Moreover,

Priv can be combined with techniques that focus on reducing
false positives caused by limitations of static analysis. Last, the
current implementation of Priv relies on manual annotations to
obtain database table and attribute names in reducing SAST-
specific false warnings. It remains as future work to conduct
a user study to assess the quality of the manual annotations
and even to provide an automated solution.
External Threats. Priv is built on one commercial product–
AppScan Source. Although we believe Priv can also benefit
other SAST techniques, in this paper, we did not evaluate
how effective that would be, which remains as future work.
Priv is built on AppScan Source, and thus is applied on web
applications in Java. Future work may extend Priv to improve
SAST for other programming languages, and frameworks, e.g.,
mobile applications. Priv targets four types of vulnerabilities
(XSS, SQLi, COMMi, PATHtrv). Other types of information-
flow vulnerabilities may also benefit from Priv, but in this
paper, we do not implement Priv for information-flow vulner-
abilities other than the four above-mentioned types. However,
the four types are the most common vulnerability types [13].

VI. RELATED WORK

Detecting Vulnerabilities Using Static Analysis. Static anal-
ysis is shown to be effective in detecting vulnerabilities,
especially information-flow-related vulnerabilities [5], [3], [4],
such as cross-site scriptings and SQL injections. Also, static
analysis is widely used to improve mobile security by detect-
ing data leaks to protect sensitive and confidential informa-
tion [19]. However, a previous study by Johnson et al. [11]
shows that developers do not fully utilize static analysis
techniques because of two reasons: high false positive rates
and the presentation of the detected results.
Helping Developers Better Utilize Static Analysis Results.
To make static bug detection more useful, researchers have
been working on decreasing the high false positive rate. Junker
et al. [20] convert static analysis to a model checking problem
and then utilize SMT solver to check path feasibilities. Fehnker
et al. [21] propose a technique to reduce false positives by
leveraging refined security rules. Muske et al. [22] propose
a partitioning approach to reduce false positives. The results
of the static analysis techniques are divided into equivalence
classes. If the leader of a class is determined as false positive,
then the entire equivalence class is false positives. Chen et
al. [12] propose techniques to prioritize the detected problems
based on their potential impact.

In addition, many statistic-based approaches are proposed to
identify false positives of static bug detection. Shen et al. [23]
improve the FindBugs [1] tool by using an error-ranking
strategy to increase true positive rate. Jung et al. [24] combine
statistical analysis with domain knowledge to reduce false pos-
itives. Krememnek et al. [25] rank static analysis warnings by
combining correlation between warnings and feedbacks from
developers. Hallem et al. [26] propose a flexible extension
language allowing users to specify system-specific rules for
detecting bugs. Tripp et al. [15] extract features and interac-
tively reduce false positives by using classification. Similarly,

Hanam et al. [16] use classification based on features from
code patterns and leverage past unactionable alerts (i.e., false
positives) as a training set. Ruthruff et al. [17] use code metrics
and false warning patterns to predict actionable warnings. Le
et al. [27] compute path dependencies of warnings to group
relevant warnings together to reduce redundancy.

Different from prior work, Priv focuses on prioritizing
developers’ quality-assurance efforts in resolving the detected
vulnerability warnings by visualizing the warnings in groups,
and providing automatically-generated fix suggestions. In ad-
dition, Priv significantly reduces false positive rate (i.e., re-
duces up to 88.6%) of database-related and attribute-related
vulnerability warnings, which are different types of false
positives that are not addressed in previous work.

VII. CONCLUSIONS

In this paper, we document our collaborative work with
security experts from AppScan Source to improve static appli-
cation security testing (SAST) techniques. We propose several
approaches to improve the utilization of SAST techniques,
and we implemented the approaches as a tool call Priv. Priv
is currently in the process of being integrated into industrial
practice, and some features of Priv are already being offered in
commercial SAST products. Priv helps prioritize developers’
quality-assurance efforts. Priv also identifies actionable warn-
ings by locating relevant warnings for database- and attribute-
related warnings. Finally, Priv improves the current remedi-
ation pages in a commercial SAST product with customized
remediation that includes the customized fix suggestion for
each detected vulnerability warning. Our evaluation shows
that Priv is effective in prioritizing quality-assurance efforts.
Priv is able to identify actional warnings by excluding up to
88.6% SAST-specific false positives, and provides customized
fix suggestions (many are fully complete and correct). In short,
Priv can help developers better utilize SAST techniques, and
thus improving software quality.

REFERENCES

[1] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,
“Using static analysis to find bugs,” IEEE Software, vol. 25, no. 5, pp.
22–29, Sept 2008.

[2] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou, “Using
findbugs on production software,” in Companion to the 22Nd ACM
SIGPLAN Conference on Object-oriented Programming Systems and
Applications Companion, ser. OOPSLA, 2007, pp. 805–806.

[3] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java
applications with static analysis,” in Proceedings of the 14th Conference
on USENIX Security Symposium, ser. SSYM, 2005, pp. 18–18.

[4] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool for
detecting web application vulnerabilities,” in Proceedings of the 2006
IEEE Symposium on Security and Privacy, ser. SP, 2006, pp. 258–263.

[5] A. Sabelfeld and A. C. Myers, “Language-based information-flow se-
curity,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 1, pp. 5–19, 2006.

[6] W. G. J. Halfond and A. Orso, “Amnesia: Analysis and monitoring for
neutralizing sql-injection attacks,” in Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE,
2005, pp. 174–183.

[7] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings of
the 2012 ACM Conference on Computer and Communications Security,
ser. CCS, 2012, pp. 229–240.

[8] IBM, “Appscan source,” 2017, https://www.ibm.com/us-
en/marketplace/ibm-appscan-source.

[9] “Checkmark static code analysis,” 2017,
https://www.checkmarx.com/technology/static-code-analysis-sca.

[10] “Fortify static code analyzer,” 2017, https://software.microfocus.com/it-
it/software/sca.

[11] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proceed-
ings of the 2013 International Conference on Software Engineering, ser.
ICSE, 2013, pp. 672–681.

[12] T. H. Chen, W. Shang, A. E. Hassan, M. Nasser, and P. Flora, “Detecting
problems in the database access code of large scale systems - an
industrial experience report,” in Proceedings of the 2016 IEEE/ACM
38th International Conference on Software Engineering Companion, ser.
ICSE-SEIP, 2016, pp. 71–80.

[13] M. Surf and A. Shulman, “How safe is it out there? zeroing in on the
vulnerabilities of application security,” in Imperva Application Defense
Center Paper, 2004.

[14] R. Tamassia, Handbook of Graph Drawing and Visualization (Discrete
Mathematics and Its Applications), 2007.

[15] O. Tripp, S. Guarnieri, M. Pistoia, and A. Aravkin, “Aletheia: Improving
the usability of static security analysis,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS, 2014, pp. 762–774.

[16] Q. Hanam, L. Tan, R. Holmes, and P. Lam, “Finding patterns in static
analysis alerts: Improving actionable alert ranking,” in Proceedings of
the 11th Working Conference on Mining Software Repositories, ser.
MSR, 2014, pp. 152–161.

[17] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and G. Rother-
mel, “Predicting accurate and actionable static analysis warnings: An
experimental approach,” in Proceedings of the 30th International Con-
ference on Software Engineering, ser. ICSE, 2008, pp. 341–350.

[18] J. Yang, E. Wittern, A. T. T. Ying, J. Dolby, and L. Tan, “Towards
extracting web api specifications from documentation,” in Proceedings
of the 15th International Conference on Mining Software Repositories,
ser. MSR ’18. New York, NY, USA: ACM, 2018, pp. 454–464.
[Online]. Available: http://doi.acm.org/10.1145/3196398.3196411

[19] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI, 2014,
pp. 259–269.

[20] M. Junker, R. Huuck, A. Fehnker, and A. Knapp, “Smt-based false
positive elimination in static program analysis,” in Proceedings of the
14th International Conference on Formal Engineering Methods: Formal
Methods and Software Engineering, ser. ICFEM, 2012, pp. 316–331.

[21] A. Fehnker, R. Huuck, S. Seefried, and M. Tapp, “Fade to grey: Tuning
static program analysis,” Electronic Notes in Theorectical Computer
Science, vol. 266, pp. 17–32, Oct. 2010.

[22] T. B. Muske, A. Baid, and T. Sanas, “Review efforts reduction by
partitioning of static analysis warnings,” in Proceedings of the 2013
IEEE 13th International Working Conference on Source Code Analysis
and Manipulation, ser. SCAM, 2013, pp. 106–115.

[23] H. Shen, J. Fang, and J. Zhao, “Efindbugs: Effective error ranking for
findbugs,” in 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation, 2011, pp. 299–308.

[24] Y. Jung, J. Kim, J. Shin, and K. Yi, “Taming false alarms from a
domain-unaware c analyzer by a bayesian statistical post analysis,” in
Proceedings of the 12th International Conference on Static Analysis, ser.
SAS, 2005, pp. 203–217.

[25] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler, “Correlation exploita-
tion in error ranking,” in Proceedings of the 12th ACM SIGSOFT Twelfth
International Symposium on Foundations of Software Engineering, ser.
SIGSOFT/FSE, 2004, pp. 83–93.

[26] S. Hallem, B. Chelf, Y. Xie, and D. Engler, “A system and language for
building system-specific, static analyses,” in Proceedings of the ACM
SIGPLAN 2002 Conference on Programming Language Design and
Implementation, ser. PLDI, pp. 69–82.

[27] W. Le and M. L. Soffa, “Path-based fault correlations,” in Proceedings of
the Eighteenth ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE, 2010, pp. 307–316.

