
Exploring Bluetooth Communication Protocols in
Internet-of-Things Software Development

Tri Minh Triet Pham, Jinqiu Yang
Computer Science and Software Engineering

Concordia University, Montreal, Canada
{p triet, jinqiuy}@encs.concordia.ca

Abstract—Internet of Things (IoT) development heavily de-
pends on the connectivity of real-world objects. Bluetooth tech-
nology is widely applied to such connectivity in many IoT
domains, such as smart home systems. Developing an integrated
IoT system involves various stakeholders, e.g., mobile app devel-
opers and firmware developers. Discrepancies on the connectivity
of the devices, i.e., how to communicate, may occur between
different stakeholders in IoT development. Discrepancies occur
when one group of developers misunderstand the communication
protocols or incorrectly implemented them in the code. Such
discrepancies may lead to unmet requirements and runtime
connection errors. To help reduce such discrepancies, we perform
a study to understand the current practices of designing Bluetooth
communication protocols (BCPs) (i.e., by firmware developers)
and how software developers manage the diverse BCPs in the
code. Such understanding is a first step to provide tool support
that can help developers better manage BCPs and detect (fault-
indicating) discrepancies, aiding the maintenance effort of mobile
applications.

Index Terms—Internet of Things, Bluetooth, mobile applica-
tions, software maintenance

I. INTRODUCTION

Internet of Things (IoT) is an emerging technology that aims
to connect physical objects from diverse domains. An example
of an IoT application is the concept of a smart home, where
devices such as light fixtures, thermostats, and other smart
appliances are connected to make intelligent decisions. Among
the various wireless technologies adopted by IoT [1], Blue-
tooth low energy (BLE) is an integral part of the IoT paradigm
as it is one of the main communication channels between
smartphones and embedded devices. An example of such
connectivity is between a smart device (e.g., a fitness tracker)
and a smartphone through an application that is programmed
to communicate between the two devices. Hence there has
been an increasing need for developing software components
that rely on BLE for communicating with embedded devices,
according to 2019 Bluetooth market update [2].

Enabling BLE connectivity in software requires compliance
with the Bluetooth communication protocols (BCPs) defined
for an embedded device. BCPs specify how one software (e.g.,
a mobile application) can communicate with an embedded
device. Typically, firmware developers define and program
BCPs in embedded devices, and software developers (e.g., mo-
bile application developers) leverage the defined BCPs when
developing software to communicate with embedded devices.
For example, the BCPs of the Mi scale specify that upon

receiving the stop command (0x03) from the scale, the mobile
application should start a cleanup procedure. Correspondingly,
to comply with the BCPs, the mobile application should send
(write) a byte value (0x03) to the corresponding characteristic
(i.e., represented by Java.util.UUID) on the Mi scale to
acknowledge the receipt of the stop command (as shown in
line 2). In this work, we call such a pair of characteristic
UUID and value that performs a specific task one command,
which is the basic unit in BCPs. Note that the value can be
a dynamic value such as date or temperature. Implementing
a functionality may require a sequence of commands, even
combined with conditions.

1 if (data[0] == 0x03) {//then clean up procedure is
required

2 writeBytes(WEIGHT_MEASUREMENT_SERVICE,
WEIGHT_MEASUREMENT_HISTORY_CHARACTERISTIC, new
byte[]{0x03});

3 ...}

Failing to follow BCPs can result in silent failures in
the software and creates difficulties in debugging due to the
less systematic nature. BCPs are the interfaces to interact
with embedded devices; however, compared to library APIs,
when violations with BCPs occur, there may not be explicit
compilation errors or runtime failures that are observable to
developers.

The prevalence and likelihood of BCP violations vary
depending on the complexity of a BCP (i.e., how firmware
developers define the BCPs of one device) and the software’s
programming practices (i.e., how software developers manage
compliance with BCPs). To further reveal the challenges in
utilizing Bluetooth in IoT development, we take the first step
to study BCPs. We answer the following two questions.

• RQ1: What are the common styles to define Bluetooth
communication protocols (BCPs) by firmware develop-
ers?
In this RQ, we explore the common structures of BCPs.
Firmware developers have much freedom to design BCPs.
The design of BCPs may vary even for similar devices.

• RQ2: How are Bluetooth communication protocols
(BCPs) managed in software by software developers?
For different BCP styles, software developers may utilize
different programming practices to facilitate compliance
with BCPs, i.e., making the implementation more sys-
tematic and easy to maintain.



TABLE I: Summary of the two open-source mobile applica-
tions in F-Droid that are suitable for this study.

Mobile Type of Embedded # of Supported
Applications Devices Devices
openScale Weight Scale 20
Gadgetbridge Smartwatch 15

II. EXPERIMENT DESIGN

Studied subjects. To answer the RQs, we need two types of
data: BCPs in written format and the corresponding application
Bluetooth components. We started collecting data from FDroid
since it is one of the largest collections of open-source Android
applications. Although many applications in FDroid use Blue-
tooth, many do not make BCPs available. Alternatively, we can
reverse engineer BCPs from the applications, but we decided
to leave that for future work. Hence, in this work, we identify
two applications with written BCPs (i.e., in the documentation)
in total. Both applications work with multiple devices: 20
different scales in openScale and 15 different smartwatches
in Gadgetbridge (Table I).
Manual analysis. We examined the documentation and the
source code that implements the BCPs in openScale and
GadgetBridge to understand how developers manage the com-
pliance with BCPs. The documentation describes BCPs in
detail; however, it lacks proper structure (i.e., almost in free-
format). For each device, we read all the developers’ docu-
ments concerning Bluetooth communication and extracted the
BCPs. After we have analyzed the provided documentation for
35 devices as shown in Table I, we found the BCPs for seven
devices from the two studied projects. For each document,
we located all the mentioned BCPs and recorded its details,
including the type of action (send or receive), the characteristic
UUID, the constraints of the value, the relevant functionality,
and the response value (if any).

III. RESEARCH QUESTION RESULTS

Results of RQ1. We concluded three common styles that
firmware developers use to design BCPs. Style A: All of the
commands (of a device) use one characteristic, and the first
few bytes of the value is the unique identifier to communicate
with the device stating the purpose of the command. Style
B: All of the commands use one of two characteristics: one
for receiving and one for sending. Similar to Style A, for the
commands under the same characteristic, the first few bytes of
the value specify the purpose of the command. Style C: Each
command uses a unique characteristic. The value expresses
command-specific information during the interaction between
the software and the device. Table II shows the number of
commands of each studied device and its BCP style. All three
styles are ad-hoc to some extent. Style C heavily relies on
the uniqueness of characteristic UUID. However, characteristic
strings are long and meaningless, thus difficult to maintain. For
example, a characteristic in Mi scale is 00002a2f-0000-3512-
2118-0009af100700. Differently, Style A simplifies the use of
characteristic; instead, it heavily uses the first few bytes of the

TABLE II: Summary of the commands and BCP style
identified based on documentation.

Device Type # Commands BCP Style
Beurer Weight Scale 47 A
Sanitas Weight Scale 47 A
Trisa Weight Scale 8 B
HPlus Smartwatch 8 B
Xiaomi Weight Scale 9 C
Medisana Weight Scale 3 C
ZeTime Smartwatch 15 C

value, which are shorter than a characteristic string, but still
meaningless, and often requires bit-wise substitution. Style B
is a balance between Style A and C.
Results of RQ2. Motivated by the uncovered styles in RQ1,
we continued to analyze how software developers manage
the compliance of BCPs. For all styles, the common practice
is to assign the characteristics to class fields that are final.
The identifiers of such class fields are very important for
developers in both implementation and maintenance. Style A
and B need extra class fields to store the unique identifiers used
in each command. Furthermore, the first few bits of a value
may be substituted before communicating with the device. For
example, when communicating with a Beurer scale, the first
four bits of the byte value is substituted with an identifier, e.g.,
binary & 0xF0 | unique id.

IV. RELATED WORK

There has been some work in discussing wireless and
network technologies in IoT development [1]. However, we
find only a few studies on the software development part of IoT
development. A recent work by Aly et al. [3] studied the lack
of interoperability among various technologies adopted by IoT
development. Their study reveals that interoperability may lead
to challenging integration problems in software development
in IoT systems.

V. CONCLUSION

We present a first study to understand the design and
management of Bluetooth communication protocols in IoT
software development. Our study uncovers common styles
of designing BCPs, all of which do not provide sufficient
resilience on possible human errors. In addition, we study
how software developers manage to comply with BCPs by
analyzing connectivity-related code.

REFERENCES

[1] Z. Sheng, S. Yang, Y. Yu, A. V. Vasilakos, J. A. Mccann, and K. K. Leung,
“A survey on the ietf protocol suite for the internet of things: standards,
challenges, and opportunities,” IEEE Wireless Communications, vol. 20,
no. 6, pp. 91–98, December 2013.

[2] “Bluetooth market update.” [Online]. Available:
https://3pl46c46ctx02p7rzdsvsg21-wpengine.netdna-ssl.com/wp-content/
uploads/2018/04/2019-Bluetooth-Market-Update.pdf

[3] M. Aly, F. Khomh, Y. Guéhéneuc, H. Washizaki, and S. Yacout, “Is
fragmentation a threat to the success of the internet of things?” IEEE
Internet of Things Journal, vol. 6, no. 1, pp. 472–487, Feb 2019.


