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ABSTRACT
Databases have become one of the most important compo-
nents in modern software systems. For example, web ser-
vices, cloud computing systems, and online transaction pro-
cessing systems all rely heavily on databases. To abstract
the complexity of accessing a database, developers make use
of Object-Relational Mapping (ORM) frameworks. ORM
frameworks provide an abstraction layer between the appli-
cation logic and the underlying database. Such abstraction
layer automatically maps objects in Object-Oriented Lan-
guages to database records, which significantly reduces the
amount of boilerplate code that needs to be written.

Despite the advantages of using ORM frameworks, we ob-
serve several difficulties in maintaining ORM code (i.e., code
that makes use of ORM frameworks) when cooperating with
our industrial partner. After conducting studies on other
open source systems, we find that such difficulties are com-
mon in other Java systems. Our study finds that i) ORM
cannot completely encapsulate database accesses in objects
or abstract the underlying database technology, thus making
ORM code changes more scattered; ii) ORM code changes
are more frequent than regular code, but there is a lack of
tools that help developers verify ORM code at compilation
time; iii) we find that changes to ORM code are more com-
monly due to performance or security reasons; however, tra-
ditional static code analyzers need to be extended to capture
the peculiarities of ORM code in order to detect such prob-
lems. Our study highlights the hidden maintenance costs
of using ORM frameworks, and provides some initial in-
sights about potential approaches to help maintain ORM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

code. Future studies should carefully examine ORM code,
in particular given the rising use of ORM in modern software
systems.

1. INTRODUCTION
Managing data consistency between source code and database

is a difficult task, especially for complex large-scale systems.
As more systems become heavily dependent on databases, it
is important to abstract the database accesses from devel-
opers. Hence, developers nowadays commonly make use of
Object-Relation Mapping (ORM) frameworks to provide a
conceptual abstraction between objects in Object-Oriented
Languages and data records in the underlying database. Us-
ing ORM frameworks, changes to object states are automat-
ically propagated to the corresponding database records.

A recent survey [54] shows that 67.5% of Java develop-
ers use ORM frameworks (i.e., Hibernate [10]) to access the
database, instead of using JDBC. However, despite ORM’s
popularity and simplicity, maintaining ORM code (i.e., code
that makes use of ORM frameworks) may be very different
from maintaining regular code due to the nature of ORM
code. Prior studies [19, 11, 45] usually focus on the evolu-
tion and maintenance of database schemas. However, the
maintenance of database access code, such as ORM code, is
rarely studied. In particular, since ORM introduces another
abstraction layer on top of SQL, introducing extra burden
for developers to understand the exact behaviour of ORM
code [7], maintaining ORM code can be effort consuming.

During a recent cooperation with one of our industrial
partners, we examined the challenges associated with main-
taining a large-scale Java software system that uses ORM
frameworks to abstract database accesses. We observed sev-
eral difficulties in maintaining ORM code in Java systems.
For example, changes that involve ORM code are often scat-
tered across many components of the system.

With such observations on the industrial system, we sought
to study several open source Java systems that heavily de-
pend on ORM in order to verify whether maintaining ORM
code in these systems also suffers from the difficulties that
are observed in the industrial system. We conducted an
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empirical study on three open source Java systems, in addi-
tion to the one large-scale industrial Java system. We find
that the difficulties of maintaining ORM code are common
among the studied systems, which further highlights that
the challenges of maintaining ORM code is a wide ranging
concern.

In particular, we investigate the difficulties of maintaining
ORM code through exploring the following research ques-
tions:

RQ1: How Localized are ORM Code Changes?
We find that code changes that involve ORM code are more
scattered and complex, even after we control for fan-in (sta-
tistically significant). In other words, ORM fails to com-
pletely encapsulate the underlying database accesses in ob-
jects; hence, making ORM code harder to maintain com-
pared to regular code.

RQ2: How does ORM Code Change?
We find that ORM code is changed more frequently (115%–
179% more) than non-ORM code. In particular, ORM model
and query code are often changed, which may increase po-
tential maintenance problems due to lack of query return
type checking at compilation time (hence many problems
might remain undetected till runtime in the field). On the
other hand, developers do not often tune ORM configura-
tions for better performance. Therefore, developers may
benefit from tools that can automatically verify ORM code
changes or tune ORM configurations.

RQ3: Why are ORM Code Changed?
Through a manual analysis of ORM code changes, we find
that compared to regular code, ORM code is more likely
changed due to performance and security reasons. However,
since ORM code is syntactically (i.e., have a unique set of
APIs, and different code structure/grammar) and seman-
tically (i.e., access databases) different from regular code,
traditional static code analyzers need to be extended to cap-
ture the peculiarities of ORM code in order to detect such
problems.

Our study highlights that practitioners need to be aware
of the maintenance cost when taking advantage of the conve-
niences of ORM frameworks. Our study also provides some
initial insights about potential approaches to help reduce
the maintenance effort of ORM code. In particular, our re-
sults helped our industrial partner understand that some
types of problems may be more common in ORM code, and
what kinds of specialized tools may be needed to reduce the
maintenance effort of ORM code.

Paper Organization. Section 2 briefly introduces differ-
ent ORM frameworks, discusses how ORM frameworks may
translate object manipulations to SQL queries, shows dif-
ferent types of ORM code, and discusses the use of ORM
in practice. Section 3 conducts a preliminary study on the
evolution of different types of ORM code and ORM code
density. Section 4 presents the results of our research ques-
tions. Section 5 discusses the implications of our findings.
Section 6 discusses the potential threats to the validity of
our study. Section 7 surveys related studies on database and
software evolution. Finally, Section 8 concludes the paper.

2. BACKGROUND OF OBJECT-RELATIONAL
MAPPING

This section provides some background knowledge of ORM.

@Entity
@Table ( name = ”user” )
@DynamicUpdate
public class User {

@Id 
@Column(name=”user_id”) 
private long userId ; 

@Column(name=”user_name”) 
private String userName;

... other instance variables

@ManyToOne
@JoinColumn(name=”group_id”)
private Group group;

void setName(String name){
this.userName = name;

}
... other getter and setter functions

}

User.java

User user = createQuery(“select u from User 
where u.userId=1”).setHint(“cacheable”, true);

user.setName(“Peter”);
commit();

Main.java

ORM
ORM
cache

Database

select u.name, u.address, u.phone_number, 
u.address from User u where u.id=1;

update user set name=Peter where id=1;

ORM generated SQL query 

@Entity
@Table ( name = ”group” )
public class User {

@Id 
@Column(name=”group_id”) 
private long groupId ; 

@Column(name=”group_name”) 
private String userName;

... other instance variables

@OneToMany(mappedBy=”group”, 
fetch=FetchType.LAZY)

private Set<User> users;

void setName(String name){
this.userName = name;

}
... other getter and setter functions

}

Group.java

Figure 1: Example of database entity classes and
how ORM translates object manipulation to SQL
queries.

We first provide a brief discussion of how ORM frameworks
are used in practice. Then, we give a simple example of
how to access a database using ORM. Finally, we discuss
the different types of ORM code.

2.1 ORM Frameworks in Practice
ORM is widely used by developers due to the simplic-

ity of the conceptual abstraction that it provides between
the source code and the underlying database [33]. A recent
survey [54] shows that 67.5% of Java developers use ORM
frameworks (i.e., Hibernate [10]) to access the database, in-
stead of using JDBC. Modern programming languages, such
as Java, C#, Python, and Ruby, all provide ORM solutions.
Java, in particular, provides a standard API for ORM, which
is called the Java Persistent API (JPA).

There exist many implementations of JPA, such as Hiber-
nate [10], OpenJPA [16], EclipseLink [17], and IBM Web-
Sphere (which uses a modified version of OpenJPA) [30].
These implementations share similar designs and functional-
ities, although they have implementation-specific differences
(e.g., varying performance [38]). Developers can switch, in
theory, between different JPA implementations with mini-
mal changes. In this paper, we focus our ORM study on
JPA due to its popularity.

2.2 Accessing a Database Using ORM
When using an ORM framework, developers usually use

annotations to map a Java class as a database entity class
(i.e., the class is mapped to a database table). Although dif-
ferent ORM frameworks may have different mapping mech-
anisms, the main concepts are common. Using ORM, devel-
opers work directly with objects, and ORM translates oper-
ations on objects to SQL queries. Figure 1 provides an ex-
ample to illustrate how ORM does such mappings and trans-
lations. Group and User are two database entity classes that
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are mapped to database tables. Main.java sends a request to
the database to retrieve a user row from the database, and
to store the row as a user object. Then, Main.java updates
data in the user object, and the corresponding change is au-
tomatically propagated to the database without developer’s
intervention.

2.3 Types of ORM code
We consider ORM code as the code that contains certain

ORM API calls or annotations. There are different types
of ORM code, which are distinguishable from ordinary Java
code. The ORM code can be classified into the following
three types:
1) Data Model and Mapping. ORM uses @Entity to
declare a class as a database entity class, and specifies the
database table to which the class is mapped using @Table.
Each instance of the database entity object is mapped to a
row in the database. For example in Figure 1, the User class
is mapped to the user table in the database, and the Group
class is mapped to the group table in the database. @Col-
umn maps instance variables to columns in the database.
For example, userName is mapped to the column user name
in the user table. Developers can also specify relationships
among different database entity classes. There are four dif-
ferent relationships: @OneToOne, @OneToMany, @Many-
ToOne, and @ManyToMany. For example in Figure 1,
we specify a @ManyToOne relationship between the User
class and the Group class (and a OneToMany relationship
between Group and User). Developers can also specify how
associated entities should be retrieved from the database.
A fetch type of EAGER means that the associated entity
(User) will be retrieved once the owner entity is retrieved
(Group). A fetch type of LAZY means that the associ-
ated entity will be retrieved only when it is needed in the
code. We expect ORM data model code will be changed
most frequently, since database schemas may change as sys-
tems evolve [45].
2) Performance Configurations. Developers can use
cache configurations to reduce the number of calls to the
database. For example in Main.java, we configure the re-
sulting SQL query (setHint(“cacheable”, true)) to be stored
in the ORM cache. ORM provides other configurations to
help optimize performance. For example, developers may
configure ORM to update only modified columns for rows in
the database (@DynamicUpdate). Without using @Dy-
namicUpdate, the ORM generated SQL queries will con-
tain all columns of an entity object, even though the values
are not updated. Using @DynamicUpdate can help re-
duce data transmission overheads and improve system per-
formance. We expect changes to the ORM performance
configuration code overtime, because performance tuning
is likely to be done when features are modified or intro-
duced [52, 13].
3) ORM Query Calls. ORM provides APIs for develop-
ers to retrieve objects from the database using the primary
key (e.g., User u = find(User.class, ID)). In some situations
where developers require more complex select criteria, de-
velopers can use the ORM query calls. ORM query calls
are similar to SQL queries, where both languages allow de-
velopers to do customized selections. ORM query calls only
support select, because ORM does the updates automati-
cally. Main.java in Figure 1 shows an example of an ORM
query call for selecting user from the database. Such ORM

Table 1: Statistics of the studied systems in the lat-
est version. ES is not shown in detail due to NDA.

Lines of No. of % files No. of Latest Median ORM
code (K) Java files contain studied studied code density

ORM versions version among all
code all versions

Broadleaf 363K 2,249 13% 79 3.1.0 1.3%
Devproof 53.7K 541 20% 7 1.1.1 0.7%
JeeSite 397K 126 16% 5 1.0.4 1.1%
ES >300K >3,000 4% >10 — < 1%

query calls are seen as a violation of the conceptual abstrac-
tion offered by ORM frameworks. In addition, these query
calls do not have type checking (e.g., the existence of the
queried columns is not checked during compilation), and
must be maintained carefully, otherwise problems arise when
database schema changes occur. We expect ORM query
code to exhibit changes overtime, since adding or modifying
features is likely to require changing ORM query code.

2.4 Identifying ORM Code
We developed a Java code analyzer that looks for ORM

API calls. Our code analyzer classifies the ORM code into
the three above-mentioned types.

3. PRELIMINARY STUDY
In this section, we first introduce our studied systems,

then we discuss the evolution of ORM code in these systems.

3.1 Studied Systems
We study three open-source systems (Broadleaf Commerce [9],

Devproof Portal [44], and JeeSite [51]) and one large-scale
industrial system (ES). Due to a Non-Disclosure Agreement
(NDA), we cannot expose all the details of ES. Table 1 shows
an overview of the studied systems, as well as the overall
ORM code density. All of the studied systems follow the
typical Model-View-Controller (MVC) design [36], and use
Hibernate as the implementation of ORM. Broadleaf Com-
merce is an e-commerce system, which is widely used in both
open-source and commercial settings. Devproof Portal is a
fully featured portal, which provides features such as blog-
ging, article writing, and bookmarking. JeeSite provides a
framework for managing enterprise information, and offers
a Content Management System (CMS) and administration
platform. ES is a real-world industrial system that is used
by millions of users worldwide on a daily basis.

3.2 Evolution of ORM Code
We first conduct a preliminary study on the evolution of

ORM code. We use the following metrics to study the evo-
lution of ORM code:

• Number of database table mappings;

• Number of ORM query calls;

• Number of performance configurations;

• ORM code density.

We define ORM code density as the total number of ORM
code (i.e., lines of code that perform database table map-
ping, performance configuration calls, and ORM query calls)
divided by the total lines of code. Below we discuss our find-
ings for the above-mentioned metrics.
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Figure 2: Evolution of the total number of database
table mappings, ORM query calls, and ORM con-
figurations. The values on the y-axis are not shown
for ES due to NDA.

Figure 2 shows the evolution of the three types of ORM
code. We find that, in general, the number of ORM query
calls has the steepest increase overtime. We also find that
the number of database table-mappings does not change
much overtime, and that the total number of ORM per-
formance configurations remains relatively stable in JeeSite
and ES. We also find that the change rate of ORM config-
uration code is lower than the other types of ORM code in
some systems. Since ORM configuration code is usually ap-
plied on ORM queries and ORM table mapping code, this
finding may indicate that not all developers spend enough
time tuning or adding the configurations, which may result
in performance problems in ORM-based systems [7].

4. CASE STUDY RESULTS
We now present the results of our research questions. Each

research question is composed of four parts: motivation, ap-
proach, experimental results, and discussion.

RQ1: How Localized are ORM Code Changes?
Motivation. To verify the generalizability of our obser-
vation in ES and examine if ORM code changes are more
scattered (i.e., complex) by nature, we study the complexity
of ORM code changes in this RQ.

Approach. We study the code change complexity after
normalizing the fan-in of ORM code. High degree of depen-
dence (i.e., high fan-in) is likely to lead to higher mainte-
nance costs (due to changing more dependent files). Hence,
by controlling for fan-in, we ensure that our obverstaions are
more likely due to the nature of ORM code rather than its
high fan-in.

Dependence on the Files that Contain ORM Code. To

measure the dependence on the files that contain ORM code,
we compute the degree of fan-in at the file level [26]. We
annotate each file as one that contains ORM code (ORM
file) or one that does not contain ORM code (non-ORM
file). Fan-in measures the number of files that depend on a
given file. For example, if file B and C both are calling one
or more functions in file A, then the degree of fan-in of file
A is two. We compute the fan-in metric for all files for all
studied versions, and then we compare the degree of fan-in
between ORM and non-ORM files.

Complexity of ORM Code Change. To measure the com-
plexity of ORM code changes, we compute the following
metrics for each commit:

• Total number of code churn (lines inserted/deleted) in
a commit;

• Total number of files that are modified in a commit;

• Commit change entropy [24].

The three above-mentioned metrics are used in prior stud-
ies to approximate the complexity of code changes in a com-
mit [53, 50, 4]. We classify commits into ORM commits
(i.e., commits that modify ORM code), and non-ORM com-
mits, and compare the metrics between these two types of
commits.

Entropy measures the uncertainty in a random variable,
and maximum entropy is achieved when all the files in a
commit have the same number of modified lines. In con-
trast, minimum entropy is achieved when only one file has
the total number of modified lines in a commit. Therefore,
higher entropy values represent a more complex change (i.e.,
scattered changes), where smaller entropy values represent
a less complex change (i.e., changes are concentrated in a
small number of files) [24].

To measure the change entropy, we implement the normal-
ized Shannon Entropy to measure the complexity of com-
mits [24, 53]. The entropy is defined as:

H(Commit) =
−
∑n

i=1 p(Filei) ∗ logep(Filei)

loge(n)
, (1)

where n represents the total number of files in a commit
Commit, and H(Commit) is the entropy value of the com-
mit. p(Filei) is defined as the number of lines changed in
Filei over the total number of lines changed in every file of
that commit. For example, if we modify three files A (mod-
ify 1 line), B (modify 1 line), and C (modify 3 lines), then
p(A) will be 1

5
(i.e., 1

1+1+3
).

Statistical Tests for Metrics Comparison. To compare the
metric values between ORM and non-ORM files, we use
the single-sided Wilcoxon rank-sum test (also called Mann-
Whitney U test). We choose the Wilcoxon rank-sum test
over Student’s t-test because our metrics are skewed, and
the Wilcoxon rank-sum test is a non-parametric test, which
does not put any assumption on the distribution of two pop-
ulations. The Wilcoxon rank-sum test gives a p-value as the
test outcome. A p-value ≤ 0.05 means that the result is sta-
tistically significant, and we may reject the null hypothesis
(i.e., the two populations are different). By rejecting the
null hypothesis, we can accept the alternative hypothesis,
which tells us if one population is statistically significantly
larger than the other. In this RQ, we set the alternative
hypothesis to check whether the metrics for ORM commits
are larger than that of non-ORM commits.
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Prior studies have shown that reporting only the p-value
may lead to inaccurate interpretation of the difference be-
tween two populations [41, 34]. When the size of the popula-
tions is large, the p-value will be significant even if the differ-
ence is very small. Thus, we report the effect size (i.e., how
large the difference is) using Cliff’s Delta [8]. The strength
of the effects and the corresponding range of Cliff’s Delta
values are [46]:

effect size =


trivial if Cliff’s Delta < 0.147
small if 0.147 ≤ Cliff’s Delta < 0.33
medium if 0.33 ≤ Cliff’s Delta < 0.474
large otherwise

Results. We find that files that contain ORM code
have a higher degree of fan-in (statistically signifi-
cant) in the studied systems, which make them good
candidate systems for our study. We compute the de-
gree of fan-in for each version separately, and report the
p-value of comparing the degrees of dependency from ORM
and non-ORM code of each version. The p-value is statis-
tically significant (<0.05) in every version of all the studied
systems (ORM files have a higher fan-in). Table 2 shows
the median of the effect sizes across all versions of the de-
gree of fan-in of files that contain ORM code and files that
do not contain ORM code. The effect sizes of the difference
are non-trivial in all of our studied systems. These findings
highlight and confirm the central role of ORM code in the
studied software systems and their evolution. Thus, these
systems are indeed good candidates for our study.

ORM-related commits modify more lines of code
and files, and the commits are more scattered, even
after we control for fan-in. We obtain a p-value of <<
0.001 for the result of the Wilcoxon rank-sum test for the
total code churn, the total files modified, and the change en-
tropy of a commit in the studied systems. Our findings indi-
cate that commits that modify ORM code are more complex
(statistically significant) than commits that do not modify
ORM code. From Table 3 we can also see that the median
of the metrics for commits that modify ORM code are all
larger than commits that do not modify ORM code. We
find that 88% of the median effect sizes of the ORM code
complexity is at least medium, which further supports the
result of our Wilcoxon rank-sum test.

Since we find that files with ORM code have a higher fan-
in in general, such characteristics may affect the complexity
of changes that involve ORM code. As a result, we further
study the complexity of ORM code changes after control-
ling for fan-in. We calculate the total fan-in of all the files
in each commit, and then we normalize the commit com-
plexity by dividing it by the total fan-in of all involved files.
For example, if a commit modifies 1,000 lines of code, and
the total fan-in of all the files that are modified in the com-
mit is 100, the normalized total lines of code modified is 10
(1,000/100). We find that, after controlling for fan-in, com-
mits that modify ORM code are still more complex (all sta-
tistically significant, except for change entropy in JeeSite).

It may first seem expected that, since ORM code is one of
the core components of a system (i.e., has higher fan-in),
ORM code changes should be more scattered. However,
the finding highlights a potential issue with ORM code.
Although the goal of ORM code is primarily on abstract-
ing relational databases in object-oriented programming lan-
guages, we find that the underlying database is not com-

Table 2: Medians (Med., computed across all ver-
sions) and effect sizes (Eff., median across all ver-
sions) of fan-in of ORM and non-ORM files. All dif-
ferences are statistically significant. We only show
the effect sizes for ES due to NDA.

Metric Type
Broadleaf Devproof JeeSite ES

Med. Eff. Med. Eff. Med. Eff. Eff.

Fan-in
ORM 11.0

0.29
5.9

0.32
6.2

0.81 0.34
Non-ORM 6.8 3 2

Table 3: Medians (Med., computed across all ver-
sions) and effect sizes (Eff., averaged across all ver-
sions) of the complexity of ORM code changes.
All differences are statistically significant. We only
show the effect sizes for ES due to NDA.

Metric Type
Broadleaf Devproof JeeSite ES

Med. Eff. Med. Eff. Med. Eff. Eff.

LOC ORM 102
0.44

241
0.60

773
0.76 0.50

modified Non-ORM 17 30 21

Files ORM 6
0.53

11
0.51

13
0.69 0.53

modified Non-ORM 2 3 2

Entropy
ORM 0.78

0.34
0.80

0.29
0.85

0.37 0.28
Non-ORM 0.00 0.59 0.61

pletely encapsulated inside objects, so changing ORM
code requires changing many other files. Further stud-
ies are needed to better understand and resolve the failure
of ORM code in keeping database knowledge encapsulated
within objects.

Discussion. We do not know whether the high fan-in of
ORM files is caused by the design of ORM code, or simply
because these files are the core components of the studied
systems. Thus, we conduct an experiment on the degree of
fan-in of files with/without ORM code. We first find the top
100 files with the highest fan-in values for each studied sys-
tem, and examine how many of the top 100 files have ORM
code (Table 4). We find that in all the studied systems, only
about 11–35 files among the top 100 files contain ORM code.
In short, we find that files with ORM code are not the only
core components of a system; nevertheless files with ORM
code tend to have a higher change complexity.

Our finding helps our industrial partner recognize the high
scatteredness of ORM code changes. ORM code changes are
considered much riskier, and require careful attention and
reviewing. Our findings are consistent among the studied
open source systems, and the problems are not specific to
ES. Further studies are needed to understand the reasons
that ORM code fail to completely encapsulate the underly-
ing database concerns within objects.

Table 4: Number of ORM files in the top 100 files
with the largest degree of fan-in (averaged across
versions).

Metric Broadleaf Devproof JeeSite ES

# of files with ORM
11.5 35 18 14.3

code in the top 100
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Table 5: Percentage of files that contain each type
of ORM code in the top 100 high fan-in files.

Type Broadleaf Devproof JeeSite ES

Data Model 7% 8% 17% 16%
ORM Query Call 1% 26% 3% 1%
Perf. Config. Call 3% 8% 15% 10%
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Figure 3: Distribution of the percentage of code
churn for different types of ORM code changes
across all the studied versions. We omit the scale
for ES due to NDA.�
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We find that ORM cannot completely encapsulate the un-
derlying database accesses in objects, making ORM code
changes more scattered.

RQ2: How does ORM Code Change?
Motivation. In RQ1, we found that changes involve ORM
code are usually more complex and more scattered. In this
RQ, we want to further study the change frequency of each
type of ORM code to find out which type of ORM code
requires the most maintenance effort. Namely, we study
how developers change different types of ORM code (i.e.,
data model, ORM query, and performance configuration).

Approach. To answer this RQ, we compute the total code
churn (i.e., added and deleted lines) and ORM code churn
(i.e., added and deleted ORM code) between versions. We
are particularly interested in how developers change different
types of ORM code, since these changes directly reflect the
maintenance activity on ORM code. Therefore, we compute
the following metrics:

Table 6: Total code churn and ORM-related code
churn in the studied systems.

Code ORM churnmodel churnconfig churnquery

Churn Churn

Broadleaf 1472K 22K (2%) 67% 7% 26%
Devproof 88K 1.1K (1%) 68% 5% 27%
JeeSite 11K 194 (2%) 49% 18% 33%
ES — <1% 41% 0.2% 59%

• Total code churn;

• Total ORM code churn;

• Code churn for ORM data model, query calls, and per-
formance configurations.

ORM data model code churn (churnmodel) computes the
amount of churn related to data model code. ORM query-
related code churn (churnquery) measures the amount of
ORM query-related churns. ORM performance configura-
tion code churn (churnconfig) measures the amount of ORM
performance configurations churns (e.g., cache configura-
tions). We also measure the total amount of code churn
and ORM code churn for comparison.

We use the following metric to measure the churn ratio of
ORM code:

churnratio =
ORM code churn

ORM code density
, (2)

where a high churnratio value means that ORM code has a
higher chance of being modified (assuming each line of code
has the same probability of being modified).

Results. Tools such as type checker for ORM queries
and automated configuration tuning may help devel-
opers with ORM code maintenance. In Broadleaf, we
find that about 2% (22K LOC) of total code churn (across
all versions) is related to ORM (Table 6). We also find
similar amount of ORM code churn in Devproof (1% of all
churn) and JeeSite (2% of all churn). Given the low ORM
code density in the entire system (Table 1), this implies that
ORM code changes more frequently than that of other code.
The churnratio for Broadleaf, Devproof, JeeSite, and ES are
115%, 179%, 164%, and 120%, respectively.

In Broadleaf, Devproof, and JeeSite, most ORM code
changes are related to data models. Developers sometimes
make changes to the data models about how the classes are
mapped to the database tables. Such changes may lead to
other ORM code changes and refactorings. Consider the
following example from the studied systems:

1 -@ManyToMany(fetch = FetchType.LAZY ,

2 -targetEntity = OrderItemImpl.class)

3 -@JoinTable(name = "GIFTWRAP_ORDERITEM")

4 +@OneToMany(fetch = FetchType.LAZY ,

5 +mappedBy = "giftWrapOrderItem",

6 +targetEntity = OrderItemImpl.class)

7 private List <OrderItem > wrappedItems =

8 new ArrayList <OrderItem >();

Developers change the relationship between OrderItemImpl
and GitWrapOrderItem from @ManyToMany to @One-
ToMany due to data model changes and refactoring. Such
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Table 7: Median churn percentage of each type of
ORM code across all versions.

Model Config Query

Broadleaf 0.9% 0.0% 1.5%
Devproof 45.6% 9.8% 56.8%
JeeSite 21.8% 17.8% 38.0%
ES 5.4% 0.0% 8.9%

changes may cause some other side effects such as the prop-
erties of the data model in the code (e.g., entity relation-
ships) no longer matching the properties in the database [42].

We find that developers in all the studied systems also
change ORM query calls very often. These ORM query calls
provide developers a non-encapsulated (i.e., not Object-Oriented)
way to retrieve data from the database. However, evolu-
tion of database models and frequent changes to these ORM
query calls may cause some problems, since there exists no
type checking for ORM query calls at compilation time [2].
For example, Nijjar et al. [42] found that there may exist
problems in ORM data models due to the abstraction of
the underlying relational models. Therefore, having tools
that can help developers with compile time code ver-
ification or type checking for ORM query calls may
reduce ORM code maintenance effort.

Finally, we find that changes to ORM performance con-
figurations are less frequent than the other types of ORM
code. This finding is alarming, since the performance of
ORM code is related to how ORM code is configured [7].
Prior studies [52, 13] from the database community have
shown that tuning the performance of database-related code
(e.g., SQL) is a continuous process, and needs to be done as
systems evolve. As a result, automatically helping de-
velopers configure ORM code will be beneficial when
maintaining ORM code. In recent work [5], we have fol-
lowed up on this finding, and implement an automated tool
for tuning ORM performance configuration code. We find
that our tool can help improve system throughput by 27–
138%.

Discussion. Since the amount of each type of ORM code
is different, we normalize the churn by the total existence
of each type of ORM code in the system. For each type of
ORM code, we divide the number of modified lines of code by
the total amount of such code. We compute such number for
each version, and we report the median value in Table 7. We
find that the change size of ORM query code is about 1.5%–
56.8% of all ORM query code, which is significantly larger
than the other two types of ORM code. We find a consistent
trend in all studied systems. Our result shows that ORM
query code is changed more often (after normalization), even
though ORM query code bypass the ORM abstraction layer
and may be error-prone (no type checking at compile time).

�

�
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ORM code has less density but is changed more frequently
(115%–179% more) than non-ORM code. We also find that
both ORM query calls and models are changed frequently,
while ORM configurations are rarely changed. Thus, de-
velopers may benefit from tools for verifying the type of re-
turned objects by ORM queries, or tools for automated tun-
ing of ORM performance configurations.

Table 8: Manually derived categories for commits.
Category Description Abbr.

Bug Fix Code is modified to fix a bug Bug

Compatibility Issue
Modifications to allow code to work

Compat
in an other environment

Feature Enhancement Enhance current functionalities Enhance
New Feature Add new functionalities New

Performance Config.
Performance and performance Config
configuration tuning

Refactoring Code refactoring Refactor

Model
Database schema/ORM data model

Model
is changed

Security Enhancement Enhance security Secure
Test Add test code Test
Upgrade Upgrade dependent changes Upgrade
GUI Modified graphical/web user interface GUI
Documentation Updated documentation Doc
Build Modify/Update build files Build

RQ3: Why are ORM Code Changed?
Motivation. In the previous RQs, we study the character-
istics of different ORM code changes. However, the reasons
for changing the ORM code are not known. Since ORM
code is dependent on the database, the reasons for ORM
code changes may be different from regular code changes.
However, ORM code may also be different from regular SQL
queries, since ORM abstracts SQL queries from developers.
Thus, in this RQ, we manually study the reasons for ORM
code changes, and we compare such reasons with regular
code changes (i.e., changes that do not modify ORM code).

Approach. We manually study the reasons for the changes
that developers make. We first collect all the commits, and
we annotate each commit as ORM-related or regular com-
mits (commits that do not modify ORM code). In total,
there are 2,223 commits that change ORM code, and 9,637
commits that do not change ORM code (across all the stud-
ied open source systems). We do not show data from ES
in this study due to NDA, but our findings in ES (e.g., the
categories and the distributions) are very similar to what we
found in the open source systems. In order to achieve a con-
fidence level of 95% with a confidence interval of 5% in our
results [3], we randomly sample 328 ORM-related commits
and 369 non-ORM commits for our manual study. We first
examine the randomly sampled commits (both ORM and
non-ORM commits) with no particular categories in mind.
Then, we manually derive the set of categories for which
these commits belong. In total, we derive 13 categories for
the commits. Table 8 has the descriptions for the categories.
For commits that belong to multiple categories, we assign
the commits to all the categories to which they belong. We
then study how the studied commits are distributed in these
categories.

Results. ORM code changes are more likely due to
performance, compatibility, and security problems com-
pared to regular code; automated techniques for de-
tecting such problems in ORM-based systems may be
beneficial. Figure 4 shows the distributions of the studied
commits and the category to which they belong. We find
that ORM and non-ORM code changes share some common
reasons. Developers spend a large amount of effort on ORM
code refactoring (30.64% of all commits that modify ORM
code). In addition, 22.01% of the commits are related to
bug fixing, and 20.33% of the commits are related to fea-
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ture enhancement. In short, more than 70% of the commits
that change ORM code are related to code maintenance ac-
tivities (i.e., refactoring, enhancement, and bug fixing) [27].
We find that these maintenance activities have very similar
distributions in non-ORM commits.

Nevertheless, some categories of ORM commits do not ex-
ist in non-ORM commits (i.e., Compat, Config, Model, and
Secure). Our sampled commits show that these reasons are
more likely to result in ORM code changes, although we ex-
pect that Model only exists in commits that contain ORM
code. We also find that ORM frameworks play a central
role in the performance of ORM-based systems – developers
change ORM configuration code more frequently for perfor-
mance improvement. In RQ2 we find that ORM configura-
tion code is not frequently changed. However, in our prior
study [7], we find that developers may not always be aware
of the performance impact of the ORM code due to the
database abstraction (i.e., developers may not know the code
they write would result in slow database accesses). Hence,
there may be many places in the code that require perfor-
mance tuning, and tools that can automatically change/tune
ORM configuration code can be beneficial to developers.

Moreover, even though ORM ideally should ensure that
the code is database-independent (i.e., porting a system
to a different database technology should require no code
changes), we still find some counterexamples. Finally, since
ORM code need to send user requests to the underlying
database, security may also more likely to be a concern (e.g.,
SQL injection attacks). In the discussion, we further discuss
some of the compatibility, performance, and security prob-
lems that we found in our manual study.

Discussion. Even though ORM is touted as a solution that
would ensure that ORM code would work against all kinds
of database technologies, we still observe database compat-
ibility issues. For example, in Broadleaf, developers change
the database table name due to an Oracle-specific size limit
on table names.

During our manual study, the most commonly observed
ORM performance configuration changes are due to data
caching. Consider the following example from Broadleaf:

1 +@Cache(usage =

2 +CacheConcurrencyStrategy.READ_ONLY)

3 private Map <String , String > images;

The images variable stores a binary image for each category
of items (represented using a Java String). The image for
each category does not change often, yet they often have a
large data size. Frequently retrieving the large binary data
from the database may cause significant performance over-
heads and reduce user experience [49]. As a result, the devel-
opers cache the images into ORM cache (Figure 1). Since the
images are read-only, adding a read-only cache significantly
improves system performance. Note that although this prob-
lem may also exist in other systems, the problem may have
higher prevalence in ORM-based systems. Since ORM does
not know whether image data is needed in the code, ORM
will always fetch the image data from the database under
default configuration. This problem may be easily observed
if developers manually write SQL queries and decide which
columns should be retrieved from the database table.

Finally, we see that developers refactor how the database
entity classes are designed and called to enhance system se-
curity. They do this by providing more validation rules (i.e.,

access control) to the user requests and to database entity
object that are being retrieved from the database.

We find that although there are common reasons for ORM
and non-ORM code changes, some problems are more likely
to cause of ORM code changes. Future studies may propose
different techniques to detect such problems in order to assist
developers with maintaining ORM-based systems.�




�

	

Based on our manually studied samples, we find that com-
patibility, performance, and security problems are more
common to result in ORM code changes. Thus, develop-
ing tools to detect such problems in ORM code may help
developers with maintaining ORM-based systems.

5. HIGHLIGHTS AND IMPLICATIONS OF
OUR FINDINGS

Our study has helped our industry partner recognize some
key challenges associated with maintaining ORM code. Our
study on the open source systems confirms that our findings
are not specific to ES, and maintaining ORM code may be
a wide-ranging concern. Although ORM frameworks are
widely used in industry, many ORM-specific problems do
not have a solution from the research world.

The highlights and implications of our findings are:

• ORM fails to completely encapsulate database
access concerns in object. We find that even though
ORM tries to abstract database accesses, such abstrac-
tion cannot be completely encapsulated in objects. Fu-
ture studies on the reasons that ORM fails to encapsu-
late database accesses in objects would help improve
the design of ORM frameworks.

• ORM cannot completely abstract the underlying
database technology. Even though ORM ideally should
ensure that the code is database-independent (i.e., port-
ing a system to a different database technology should
require no code changes), we still find some counterex-
amples. Future studies may study the reasons that
ORM fails to completely abstract the underlying database
technology, and help developers create tools to migrate
seamlessly to different database technologies.

• Although ORM code is frequently modified, there
is a lack of tools to help prevent potential prob-
lems after ORM code changes. In RQ2, we found
that ORM code is modified more frequently than reg-
ular code, and some types of ORM code are modified
even more frequently. However, since changes to ORM
model or query code may introduce runtime exceptions
that affect the quality of a system, ORM code would
benefit from type checking at compile time. Future
research on providing automated tools to detect such
problems can greatly reduce ORM maintenance effort,
and improve the quality of systems that make use of
ORM frameworks.

• Traditional static code analyzers need to be ex-
tended to better capture the peculiarities of ORM
code in order to find ORM-related problems. ORM-
related problems may be different, either syntactically
or semantically, from the problems one may see in reg-
ular code (due to ORM’s database abstraction). Thus,
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Figure 4: Distributions of the commits for ORM and non-ORM code in each categories.

traditional static code analyzers, which usually do not
consider the domain knowledge of ORM code, may not
able to detect these ORM-related problems without
proper extensions. For example, FindBugs1 is able to
detect security problems in JDBC code, but FindBugs
cannot detect such problems in ORM code without a
proper extension. A recent study [6] shows that there
are many database access code related problems that
can be detected using static code analysis; however,
existing tools and the research community have not
put enough efforts on detecting such domain-specific
problems (i.e., related to database access). In general,
due to the large number of available frameworks, a bet-
ter option would be for framework developers to pro-
vide static code analyzers for the usage of their frame-
works. Thus, developers who are using these frame-
works can benefit from these code analyzers when de-
veloping their own systems.

• Developers may benefit from tools that can au-
tomatically help them tune ORM performance
configuration code. We found that developers are
more likely to change ORM code for performance rea-
sons compared to regular code. However, in RQ2 we
find that developers do not often change ORM config-
uration code. Prior studies [52, 13] from the database
community show that tuning the performance of database-
related code (e.g., SQL) is a continuous process, and
needs to be done as systems evolve. In addition, in our
prior study [7], we find that developers may not always
be aware of the performance impact of the ORM code
due to the database abstraction. Therefore, there may
be many potential places in the code that require per-
formance tuning. Hence, tools that can automatically
change/tune ORM configuration code can be beneficial
to developers.

Our industry partner is now aware of the high scattered-
ness of ORM code changes, and such changes are considered
much riskier and require careful attention and review. In
addition, our industry partner also recognizes the benefit
of having tools that can automatically help refactoring and
finding problems in ORM code.

6. THREATS TO VALIDITY
We now discuss the threats to validity of our study.

Internal Validity. In this paper, we study the characteris-
tics and maintenance of ORM code. We discover that ORM
code exhibits different patterns compared to non-ORM code.
However, we do not claim a casual relationship. There may
be other confounding factors that influence our results (e.g.,

1http://findbugs.sourceforge.net/

developers intentionally allocate more resources to the main-
tenance of files with ORM code). Controlled user studies are
needed to examine these confounding factors.

External Validity. To extend the generalizability of our
results, we conduct our study on three open source systems
and one large-scale industrial system. We choose these stud-
ied open source systems because they either have longer de-
velopment history or are similar to the industrial system.
There may be other similar Java systems that are not in-
cluded in our study. Hence, in the future, we plan to find
and include more systems in our study and see if our findings
are generalizable. However, our current findings are already
having an impact on how our industrial partner maintain
ORM code.

We focus our study on JPA (Java ORM standard) because
it is widely used in industry and is used by our industrial
partner. However, our findings may be different for other
ORM technologies (e.g, ActiveRecord or Django). Never-
theless, although the implementation details are different,
these ORM frameworks usually share very similar concepts
and configuration settings.

Construct Validity. We automatically scan the studied
systems and identify ORM code. Therefore, how we iden-
tify ORM code may affect the result of our study. Although
we use our expert knowledge and references to identify ORM
code [43], our approach may not be perfect. We plan to in-
vestigate the accuracy of our approach for identifying ORM
code changes in the future. We annotate a commit as an
ORM-related commit if the commit modifies ORM code.
Given the large number of commits (over 10K), we have
chosen to use an automated approach for commit classifica-
tion. It is possible that some modifications in the commit
are not related to ORM. However, during our manual study
in RQ3, we find that our approach can successfully iden-
tify ORM-related commits, and we believe our automated
approach has a relatively high accuracy.

We compare ORM code with non-ORM code, but there
may be many kinds of non-ORM code (e.g., GUI or net-
work). However, since we are not experts in the studied sys-
tems, and there can be hundreds of different sub-components
(depending on how we categorize non-ORM code), we choose
to categorize code as ORM and non-ORM code. Ideally
we would want to compare ORM code with other types of
database access code (e.g., JDBC). However, most systems
are implemented using only one database access technology,
and it is not realistic to compare two different systems that
use two database access technologies.

7. RELATED WORK
In this paper, we study the characteristics and mainte-

nance of ORM code, which is not yet studied nor well un-
derstood by researchers and practitioners. In this section,
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we survey prior studies on the evolution of database code
and non-code artifacts. While many prior studies examined
the evolution of source code, (e.g., [18, 20, 37]), this paper
studies the evolution of software systems from the perspec-
tive of the non-code artifacts. Such non-code artifacts are
extensively used in practice, yet the relation between such
artifacts and their associated source code is not widely stud-
ied.

7.1 Evolution of database code
Prior studies focus on the evolution of database schemas,

while our paper focuses on the evolution of the database-
related code. Qiu et al. [45] conduct a large-scale study on
the evolution of database schema in database-centric sys-
tems. They study the co-evolution between database schema
and application code, and they find that database schemas
evolve frequently, and cause significant code-level modifica-
tions (we observe similar co-evolution even though ORM
is supposedly designed to mitigate the need for such co-
evolution). Carlo et al. [12] study the database schema evo-
lution on Wikipedia, and study the effect of schema evolu-
tion on the system front-end. Curino et al. [11] design a
tool to evaluate the effect of schema changes on SQL query
optimization. Meurice and Cleve [40, 19] develop a tool
for visualizing database schema evolution. Goeminne et
al. [21] analyze the co-evolution between code-related and
database-related activities in a large open source system,
and found that there was a migration from using SQL to
ORM. In another work, Goeminne et al. [22] study the sur-
vival rate of several database frameworks in Java projects
(i.e., when would a database framework be removed or re-
placed by other frameworks), and they found that JPA has
a higher survival rate than JDBC.

7.2 Non-code artifacts
User-visible features. Instead of studying the code di-
rectly, some studies have picked specific features and fol-
lowed their implementation throughout the lifetime of the
software system. Antón et al. [1] study the evolution of tele-
phony software systems by studying the user-visible services
and telephony features in the phone books of the city of
Atlanta. They find that functional features are introduced
in discrete bursts during the evolution. Kothari et al. [35]
propose a technique to evaluate the efficiency of software fea-
ture development by studying the evolution of call graphs
generated during the execution of these features. Greevy et
al. [23] use program slicing to study the evolution of fea-
tures. His et al. [28] study the evolution of Microsoft Word
by looking at changes to its menu structure. Hou et al. [29]
study the evolution of UI features in the Eclipse IDE.

Communicated information. Shang et al. [47, 48] study
the evolution of communicated information (CI) (e.g., log
lines). They find that CI increases by 1.5-2.8 times as the
system evolves. Code comments, which are a valuable in-
strument to communicate the intent of the code to program-
mers and maintainers, are another source of CI. Jiang et
al. [32] study the evolution of source code comments and dis-
cover that the percentage of functions with header and non-
header comments remains consistent throughout the evolu-
tion. Fluri et al. [14, 15] study the evolution of code com-
ments in eight software systems. Hassan et al. [25] propose
an approach to recover co-change information from source
control repositories, and Malik et al. [39] study the rational

for updating comments. Ibrahim et al. [31] study the rela-
tionship between comments and bugs in software systems.

8. CONCLUSION
Object-Relational Mapping (ORM) provides a conceptual

abstraction between database and source code. Using ORM,
developers do not need to worry about how objects in Object-
Oriented languages should be translated to database records.
However, when cooperating with one of our industrial part-
ners, we observed several difficulties in maintaining ORM
code. To verify our observations, we conducted studies on
three open source Java systems, and we found that the chal-
lenges of maintaining JPA code (i.e., ORM standard APIs
for Java) is a wide ranging concern. Thus, understanding
how ORM code is maintained is important, and may help
developers reduce the maintenance costs of ORM code. We
found that 1) ORM code changes are more scattered and
complex in nature, which implies that ORM cannot com-
pletely encapsulate database accesses in objects; future stud-
ies should study the root causes to help better design ORM
code, especially in Java systems; 2) even though ORM ide-
ally should ensure that the code is database-independent,
we find that it is not always true; 3) ORM query code is
often changed, which may increase potential maintenance
problems due to lack of return type checking at compila-
tion time; 4) traditional static code analyzers need to be
extended to better capture the peculiarities of ORM code
in order to find ORM-related problems; and 5) tools for
automated ORM performance configuration tuning can be
beneficial to developers. In short, our findings highlight the
need for more in-depth research in the software maintenance
communities about ORM frameworks (especially given the
growth in ORM usage in software systems).
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